Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
2
На плоскости даны четыре точки с целочисленными координатами: A(a, 0), B(b, 0), C(0, c) и D(0, d), где 0 < a < b и 0 < c < d. Точка P(x,y) с целочисленными координатами выбрана на отрезке AC так, что треугольники ABP, CDP и BDP оказываются подобными.
Легко показать, что при этом a=c=x+y. Поэтому, задав подходящим образом четверку чисел (x,y,b,d), мы однозначно определим размер и положение наших треугольников. Например, четверки (x,y,b,d)=(1,1,3,4) и (x,y,b,d)=(1,1,4,3) обе удовлетворяют указанным условиям: каждая из них задает три подобных треугольника. Мы будем считать различными такие четверки, отвечающие взаимно симметричным конфигурациям. При b+d<100 существует 110 различных четверок, задающих три подобных треугольника. При b+d<100 000 существует 395662 различных четверок, задающих три подобных треугольника. Сколько существует различных четверок, задающих три подобных треугольника при b+d<100 000 000?
Задачу решили:
4
всего попыток:
5
Назовем натуральное число n мощным, если для его любого простого делителя p число n делится также на p2. Назовем натуральное число n точной степенью, если оно является степенью другого натурального числа. Назовем натуральное число n ахиллесовым, если оно мощное, но не является точной степенью. Например, числа 864 = 25•33 и 1800 = 23•32•52 — ахиллесовы. Назовем натуральное число S сильно ахиллесовым, если и S, и φ(S) — ахиллесовы. Здесь φ(S) означает функцию Эйлера. Например, число 864 — сильно ахиллесово число, поскольку φ(864) = 288 = 25•32, а число 1800 — ахиллесово, но не сильно ахиллесово, так как φ(1800) = 480 = 25•31•51. Существует 2 трехзначных и 5 четырехзначных сильно ахиллесовых чисел, а восьмизначных насчитывается 396. Найдите количество 18-значных сильно ахиллесовых чисел.
Задачу решили:
14
всего попыток:
17
Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек. Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203. Можно подсчитать, что f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443 Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000
Задачу решили:
7
всего попыток:
11
Как известно, последовательность Фибоначчи определяется рекуррентно: f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1. Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106. Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.
Задачу решили:
3
всего попыток:
8
Рассмотрим бесконечную строку S, состоящую из записанных подряд натуральных чисел в десятичной записи: S =1234567891011121314151617181920212223242... Ясно, что десятичная запись каждого натурального числа n встретится в строке S бесконечно много раз. Будем отмечать, где именно встретились такие вхождения. Например, число 12 первый раз встретится, начиная с позиции 1 строки S, а второй раз — с позиции 14, и так далее. Обозначим через f(n) номер позиции в строке S, с которого начинается n-ое вхождение числа n. Например, f(1)=1, f(5)=81, f(11)=235, а f(7780)=111111365. Найдите ∑f(11k), где 1≤k≤6.
Задачу решили:
4
всего попыток:
13
Две лестницы длиной x и y опираются на противоположные стены коридора шириной w, как показано на рисунке. Пусть h – высота, на которой лестницы пересекаются. Нас интересуют случаи, когда все четыре числа – x,y,w и h – оказываются целыми. Например, для x = 70 и y = 119 можно найти пару подходящих целых чисел h = 30 и w = 56. При 0<x<y<200 есть ровно пять пар (x,y), для которых существуют целые h и w, а именно: (70, 119), (74, 182), (87, 105), (100, 116) и (119, 175). А сколько существует пар (x,y) при 0<x<y<1 000 000, для которых можно подобрать целые значения w и h?
Задачу решили:
3
всего попыток:
3
Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом. Проигрывает тот, кто не может сделать очередной ход. Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c). Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными. Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция. Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.
Задачу решили:
2
всего попыток:
3
Пусть ABCD – выпуклый четырехугольник с целыми сторонами, и 1 ≤ AB < BC < CD < AD. Точка O – середина диагонали BD. Будем называть четырехугольник ABCD биклинным, если длины отрезков BO, DO, AO и CO – целые числа, и AO = CO < BO = DO. Например, когда AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 и AO = CO = 23, четырехугольник ABCD является биклинным. Обозначим через B(N) количество различных биклинных четырехугольников ABCD с целыми сторонами, у которых |AB|2+|BC|2+|CD|2+|AD|2 ≤ N.. Можно проверить, что B(10 000) = 48 и B(1 000 000) = 38108. Найдите B(10 000 000 000).
Задачу решили:
3
всего попыток:
7
Когда стали раздавать бесплатные участки на Луне, были установлены следующие правила. Каждому государству выделяется квадратная площадка размером 500 х 500 м. Площадка расчерчена на клетки размером 1 х 1 м, в углах которых установлено 251001 столбов. Забор должен состоять из прямолинейных отрезков, соединяющих столбы. Однако нужно учитывать, что строительство заборов в лунных условиях недешево. Конечно, богатые государства построили себе ограды длиной 2000 м, которые ограничивали площадь 250 000 м2. Но финансы княжества Фенвик расстроены, и правительство поручило вам, Главному Программисту, найти оптимальную форму забора, обеспечивающую максимальное отношение площади огороженного участка к длине забора. Прежде, чем писать программу, вы сделали предварительные расчеты. Для квадратного забора длиной 2000 м площадь участка получается равной 250 000 м2, а отношение площади к длине ограды равно 125. Если бы разрешалось строить криволинейные заборы, то для круглого участка диаметром 500 м площадь будет равна π*2502 м2, длина ограды - π*500 м, и отношение будет равно тому же числу 125. Если же отрезать от четырех углов площадки четыре равнобедренных прямоугольных треугольника с катетами 75 м, как показано на рисунке зеленым цветом, можно достичь существенного выигрыша. Действительно, площадь участка станет равной 238750 м2, длина забора будет равна 1400+300√2 м, а интересующее нас отношение составит примерно 130,87. При этом будет использовано 1700 столбов.
Найдите форму участка, обеспечивающую максимум отношения площади огороженного участка к длине ограды. В качестве ответа укажите количество использованных столбов.
Задачу решили:
6
всего попыток:
18
Космонавт пытается посадить космоплан на плоскую горизонтальную поверхность планеты X. Однако космический пират, высадившийся ранее и вооруженный пулеметом, пытается помешать ему. Начальная скорость пули составляет 740 м/с. При этом считается, что пуля опасна для космоплана, когда ее скорость превышает 100 м/с. Космонавт знает, что на планете X нет атмосферы, а ускорение свободного падения равно 9,81 м/с2. Найдите объем той области пространства, где пулемет представляет опасность для космоплана. Результат выразите в кубометрах и округлите вниз до целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|