Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
73
всего попыток:
95
Треугольные числа вычисляются по формуле n*(n+1)/2, вот первые из них: 1, 3, 6, 10, 15, ..., гексагональные - по формуле n*(2n-1): 1, 6, 15, 28, 45, ... и гептагональные - n*(5n-3)/2: 1, 7, 18, 34, 55, ...
Задачу решили:
23
всего попыток:
53
Рассмотрим натуральные числа, в десятичной записи которых каждая цифра встречается не более двух раз. Расположим их в порядке возрастания: 1, 2, 3, 4, и т.д. Миллионное по счету число будет 1229648. Какое число будет на месте с номером 1012?
Задачу решили:
65
всего попыток:
83
Кристиан Гольдбах предположил, что каждое нечетное составное число может быть разложено в сумму простого и удвоенного квадрата натурального числа. Например: 9 = 7 + 2 * 12 15 = 7 + 2 * 22 21 = 3 + 2 * 32 25 = 7 + 2 * 32 33 = 31 + 2 * 12 Но оказалось, что предположение всё же неверно. Найдите все нечетные составные числа меньше 1000000, которые невозможно разложить в такую сумму. В ответе укажите сумму всех таких чисел.
Задачу решили:
56
всего попыток:
74
Для каждого числа найдем число его различных простых делителей, например: 12 = 22*3 - у него 2 различных простых делителя 2 и 3. Оказывается, что минимальные два последовательных числа, у которых по 2 различных простых делителя, это: 14 = 2*7 15 = 3*5 Первая тройка последовательных числа, у которых по три различных простых делителя: 644 = 22*7*23 645 = 3*5*43 646 = 2*17*19 Надо найти первую тройку последовательных чисел, для каждого из которых количество различных простых делителей ровно 5. В ответе запишите первое число из тройки.
Задачу решили:
110
всего попыток:
127
Сумма ряда 11 + 22 + 33 + ... + 1010 = 10405071317 Нужно найти последние 10 цифр суммы ряда: 11 + 22 + 33 + ... + 20092009
Задачу решили:
65
всего попыток:
238
Треугольник Паскаля - это бесконечный треугольник из чисел, который имеет следующий вид: 1 В этом треугольнике в вершине и по бокам стоят единицы, а каждое из остальных чисел равно сумме двух чисел, расположенных над ним. Строки в треугольнике нумеруются с нуля. Например, пятая строка состоит из чисел 1, 5, 10, 10, 5, 1. Требуется найти количество нечетных чисел в строке с номером 1012.
Задачу решили:
54
всего попыток:
100
Рассмотрим арифметическую прогрессию из трех членов 1487, 4817, 8147 с шагом 3330. Все числа в ней простые. Но она обладает еще одним интересным свойством - каждое число тройки может быть составлено из цифр другого. Найдите все тройки пятизначных чисел, составляющие возрастающую арифметическую прогрессию, являющихся простыми и к тому же такие, что числа внутри тройки можно получить друг из друга перестановкой цифр. В ответе выведите количество таких троек.
Задачу решили:
67
всего попыток:
122
Число 17 может быть представлено как сумма идущих подряд простых чисел: 2 + 3 + 5 + 7 = 17. Найдите самый длинный ряд последовательных простых чисел таких, что их сумма - тоже простое число меньшее 3000000. В ответе запишите произведение количества простых чисел в найденном ряде и их суммы.
Задачу решили:
33
всего попыток:
65
Рассмотрим пятизначную конструкцию 56**3. Заменив звездочки одинаковыми цифрами, мы получим серию из 10 чисел 56003, 56113, ..., 56993. Семь из этих чисел простые (56003, 56113, 56333, 56443, 56663, 56773, 56993). Теперь рассмотрим все различные семизначные конструкции, состоящие из цифр и звездочек. Замена звездочек одинаковыми цифрами в каждой конструкции порождает серию из 10 чисел, например, конструкция **1*23* порождает серию: 0010230, 1111231, 2212232, 3313233, 4414234, ..., 9919239. Выберем только те конструкции, в которых после замены звездочек в полученной серии из 10 чисел имеется не менее 8-ми семизначных простых чисел. Теперь выбросим в отобранных конструкциях звездочки и полученные числа сложим. Чему равна сумма?
Задачу решили:
84
всего попыток:
95
Оказывается есть такие числа, что при умножении их на некоторое число получается число, состоящее из цифр исходного числа. Например, 125874 * 2 = 251748. Найдите все семизначные числа, которые при умножении на каждое из чисел 2, 3, 4, 5 и 6 дают результаты, состоящие из цифр исходного числа. В ответе напишите сумму всех таких чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|