Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
12
Замечание: Это более сложный вариант задачи 114. Как и в задаче 114, будем рассматривать прямоугольные полоски, состоящие из n выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее mr клеток, а черные – не менее mb.
Обозначим через F(mr, mb,n) число способов, которым такая полоска может быть построена, например F(3, 2, 8)=14 (см. рисунок).
Кроме того, F(3, 2, 34)= 856506 и F(3, 2, 35)= 1309554. Это означает, что n=35 – минимальное значение, при котором функция F(3, 2,n) превосходит миллион. Аналогично, F(5, 3, 46) = 849735 и F(5, 3, 47)= 1172897, и 47 – первое значение n, при котором F(5, 3, n) больше миллиона. Найдите минимальное значение n, при котором F(111, 100, n) > 1 000 000.
Задачу решили:
8
всего попыток:
14
В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. Сколько существует различных симметричных простых квадратов (т.е. таких, в которых первая строка равна первому столбцу, вторая строка - второму столбцу, и так далее, все 5)?
Задачу решили:
51
всего попыток:
81
Была исходная последовательность символов: В конец этой последовательности дописали ее копию, но развернутую зеркально (символы взяли в обратном порядке). Получилась строка: Эту операцию повторили еще три раза, каждый раз дописывая в зеркальном отображении всю последовательность, полученную на предыдущем шаге. В результате получилась последовательность из 128 символов. В получившейся последовательности заменили все тройки идущих подряд символов BAB на ABA. Эту операцию повторяли до тех пор, пока тройки идущих подряд символов BAB не перестали встречаться в последовательности. Сколько букв B осталось в результирующей последовательности?
Задачу решили:
6
всего попыток:
22
Электрическая цепь состоит из одинаковых конденсаторов емкостью C. Конденсаторы можно соединять последовательно или параллельно в блоки, которые также можно соединять последовательно или параллельно в "суперблоки" большего размера, и так далее.
Задачу решили:
9
всего попыток:
14
Вагоны поезда обозначены буквами латинского алфавита: A,B,C,D..., и последовательность вагонов в железнодорожном составе можно задать с помощью соответствующей цепочки букв. В правильно сформированном составе вагоны должны следовать алфавитном порядке. Добиваются этого на сортировочной станции, где установлен большой поворотный круг. Когда состав въезжает на круг, несколько последних вагонов отцепляют, после чего локомотив с остальными вагонами съезжает с круга. Вагоны, стоящие на круге, поворачивают на 180 градусов и вновь прицепляют в хвост состава, но уже в обратном порядке. Эту операцию повторяют несколько раз, пока не достигают желаемого результата. В некоторых случаях сформировать состав совсем просто. Например, когда исходный порядок вагонов ADCB, вагоны можно расцепить между A и D, затем развернуть фрагмент DCB, и, наконец, сцепить вагоны в нужном порядке. Результат достигается всего за один шаг, т.е. за один поворот круга на 180 градусов. Возможно, процесс можно оптимизировать, но машинист пользуется совсем простым алгоритмом. Сначала он стремиться прицепить вагон A следом за паровозом, затем следом за ним вагон B, и так далее. Машинист выяснил, что для состава из четырех вагонов потребуется не более 5 шагов. Максимальное количество - 5 операций - требуется для двух начальных последовательностей, а именно DACB и DBAC. Последовательности вагонов, требующие наибольшего количества операций для упорядочения, будем называть пессимальными. Порядок формирования состава для начальной последовательности DACB показан на рисунке.
Для состава из шести вагонов машинист составил список пессимальных последовательностей. Список содержал 24 последовательности. Последовательности он расположил в алфавитном порядке, и цепочка DFAECB оказалась на десятом месте от начала. Представьте, что вам поручили составить список пессимальных последовательностей для составов из 11 вагонов и упорядочить получившийся список в алфавитном порядке. На каком месте в списке окажется последовательность CIAKBGHFJDE?
Задачу решили:
6
всего попыток:
10
По бесконечной клетчатой доске, клетки которой окрашены в черный или в белый цвет, ползает муравей. Он может двигаться в одном из четырех направлений: вверх, вниз, влево и вправо, с каждым шагом перемещаясь в соседнюю по стороне клетку. При этом муравей соблюдает следующие правила движения:
Пусть в начальный момент все клетки доски белые, а муравей находится в точке с координатами x=0 и y=0. Клетки доски ориентированы вдоль координатных осей и имеют единичный размер.
Задачу решили:
0
всего попыток:
1
Сколькими различными способами можно разрезать шестиугольник из 54-х одинаковых равносторонних треугольников по линиям сетки на три конгруэнтных n–угольника? Разрезания, являющиеся симметрическими отображениями друг друга, считать только один раз. Т.е., нужно найти количество «неконгруэнтных разрезаний».
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|