Лента событий:
putout решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
64
всего попыток:
100
Функция f(n) определена для всех натуральных n и принимает целые неотрицательные значения. Известно, что f(n) удовлетворяет условиям: а) при любых m и n f(m + n) – f(m) – f(n) принимает значения 0 или 1, б) f(2) = 0, в) f(3) > 0, г) f(9999) = 3333. Найти f(2009).
Задачу решили:
81
всего попыток:
115
Для некоторых натуральных чисел m и n (m < n) последние три цифры десятичной записи чисел 2009n и 2009m совпадают. Чему равна минимальная сумма m+n?
Задачу решили:
42
всего попыток:
77
Пусть a и b – натуральные числа, a < b. При делении a² + b² на a + b получается частное q и остаток r. Найти количество всех разных чисел b из пар (a,b), для которых q² + r = 2009.
Задачу решили:
31
всего попыток:
34
Известно, что оригинал зашифрованного текста написан на русском языке в кодировке - Windows-1251, также известен, алгоритм шифрования: Задумано кодовое слово из трёх строчных кириллических символов, и затем к его концу просто дописывалось оно же необходимое число раз (например, абвабв...абв). Затем с каждым символом некоторого текста и соответствующим по номеру символом кодового слова проводилась операция XOR. Она обладает тем свойством, что если дважды совершить операцию XOR с одним и тем же символом, то результат будет равным оригиналу. Расшифруйте отрывок, не имея кодового слова. В ответ запишите сумму всех чисел соответствующих номерам символов расшифрованного текста в кодовой странице Windows-1251. Вот зашифрованный отрывок: 47,11,8,25,11,18,11,197,7,12,1,10,0,13,194,1,197,47,11,23,2,19,0,194,3,197,12,
Задачу решили:
31
всего попыток:
45
Некоторые пары простых чисел обладают таким свойством: если записать их подряд в произвольном порядке, то получится тоже простое число. Например, этим свойством обладают числа 3 и 7, поскольку 37 и 73 тоже простые. Найдите среди простых чисел меньших 10000 все возрастающие четверки простых чисел такие, что любая пара из четверки обладает описанным свойством. Например, такой четвёркой является 3, 7, 109, 673. В разных четверках числа могут повторяться. Вычислите сумму всех чисел во всех четверках.
Задачу решили:
47
всего попыток:
132
Десятичная запись числа 987654321! заканчивается на 246913573 нулей. Чему равны последние шесть ненулевых цифр?
Задачу решили:
86
всего попыток:
136
Числа Фибоначчи задаются следующей рекуррентной формулой: fn+2=fn+1+fn. При этом f0=0, f1=1. Сколько всего чисел Фибоначчи f таких, что 1010 < f < 10100.
Задачу решили:
35
всего попыток:
61
Любое натуральное число N можно представить в виде произведения степеней простых чисел: N=p1k1*p2k2*...*pmkm Найти максимум p1k1+p2k2+...+pmkm для всех N < 1010.
Задачу решили:
97
всего попыток:
167
Разместите простые числа в ряд по возрастанию: 2, 3, 5, 7, 11, 13,... Суперпростые числа - это числа в ряду простых чисел, порядковый номер которых также является простым числом. Сколько всего суперпростых чисел меньших 107?
Задачу решили:
25
всего попыток:
50
Найти максимальное число, меньшее 107, которое имеет наибольшее количество представлений в виде суммы различных простых чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|