img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 53
всего попыток: 152
Задача опубликована: 23.04.09 20:09
Прислал: falagar img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: tv0r0g (Константин Еременко)

Числа Фибоначчи задаются следующей рекуррентной формулой: fn+2=fn+1+fn. При этом f0=0, f1=1. Требуется найти  fn по модулю 952301267 при n=1018.

Задачу решили: 65
всего попыток: 238
Задача опубликована: 26.04.09 09:17
Прислал: falagar img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: sova89 (Анастасия Спирина)

Треугольник Паскаля - это бесконечный треугольник из чисел, который имеет следующий вид:

1
1   1
1   2   1
1   3   3   1
1   4   6   4   1
1   5   10  10  5   1
1   6   15  20  15  6   1
...

В этом треугольнике в вершине и по бокам стоят единицы, а каждое из остальных чисел равно сумме двух чисел, расположенных над ним. Строки в треугольнике нумеруются с нуля. Например, пятая строка состоит из чисел 1, 5, 10, 10, 5, 1. Требуется найти количество нечетных чисел в строке с номером 1012.

Задачу решили: 20
всего попыток: 62
Задача опубликована: 25.05.09 18:55
Прислал: pikachu img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Пусть A1=2009, ..., Ak+1=2009Ak.
Найти последние 40 цифр числа A2009.

Задачу решили: 40
всего попыток: 73
Задача опубликована: 03.06.09 11:19
Прислал: admin img
Источник: в ред. А.Лунева
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: perfect_result... (Александр Опарин)

Найти минимальное 24-значное число a1a2a3...a24, которое удовлетворяет следующим условиям:

a1 делится на 1;

a1a2 делится на 2;

a1a2a3 делится на 3;

...

a1a2a3...a24 делится на 24.

Задачу решили: 57
всего попыток: 106
Задача опубликована: 29.07.09 11:30
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Gh0stik

Чему равна сумма цифр находящихся на местах с простыми номерами в десятичной записи числа 210000?

Задачу решили: 1
всего попыток: 6
Задача опубликована: 13.09.09 09:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 500
Темы: алгебраimg

В вашем распоряжении n>0 одинаковых сопротивлений и батарейка. При каком минимальном из них можно собрать электрическую схему, значения силы тока во всех n+1 элементах которой попарно различны? (Элементы схемы — это все сопротивления и батарейка.) В ответе как-нибудь изобразите найденную схему и укажите значения силы тока во всех её элементах.

Задачу решили: 32
всего попыток: 49
Задача опубликована: 26.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 200
Темы: алгебраimg

Найдите сумму первых 100 цифр после запятой числа sin(sin(sin...(sin 1)...)) (sin повторяется 10 раз).

Задачу решили: 10
всего попыток: 11
Задача опубликована: 05.04.10 08:00
Прислал: Dremov_Victor img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Рассмотрим степенной ряд AG(x)=x * G1+x2 * G2 + x3 * G3 + ... , где через Gk обозначен k-ый член последовательности 1, 4, 5, 9, 14, 23, ... , задаваемой рекуррентным соотношением
Gk = Gk - 1 + Gk - 2, G1 = 1 и G2 = 4.

Мы интересуемся такими x, для которых AG(x) является натуральным. 

Ниже для первых пяти натуральных чисел приведены соответствующие значения x.

x              AG(x)
(sqrt(5) - 1)/4    1
2/5    2
(sqrt(22) - 2)/6    3
(sqrt(137) — 5)/14    4
1/2    5

Мы будем называть число AG(x) золотым самородком, если x рациональное, так как с ростом AG(x) они встречаются все более и более редко. Так, например, двадцатый золотой самородок равен 211345365.

Найдите 40-й золотой самородок.

Задачу решили: 8
всего попыток: 11
Задача опубликована: 12.04.10 08:00
Прислал: Dremov_Victor img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Поделим с остатком натуральное число n на d. Пусть неполное частное равно q, а остаток r. Иногда числа d, q и r, записанные в некотором порядке, образуют геометрическую прогрессию.

Для примера поделим с остатком 58 на 6. Получим неполное частное 9 и остаток 4. Видим, что 4, 6, 9 образуют геометрическую прогрессию (со знаменателем 3/2).
Мы будем называть такие числа n прогрессивными.

Некоторые прогрессивные числа, такие как 9 или 10404 = 1022, являются полными квадратами.
Оказывается, что 97344 - это наибольший прогрессивный полный квадрат, меньший ста тысяч.

Найдите наибольший прогрессивный полный квадрат, меньший одного триллиона (1012).

Задачу решили: 3
всего попыток: 12
Задача опубликована: 26.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

На складах 'A' и 'B' хранятся деликатесы в следующих количествах:

Наименование товара Склад 'A',
кол-во упаковок
Склад 'B',
кол-во упаковок
Белужья икра 5248 640
Рождественский кекс 1312 1888
Окорок 2624 3776
Марочный портвейн 5760 3776
Шампанские трюфели 3936 5664

Обратите внимание на то, что количество каждого продукта измеряется упаковками, т.е. целым числом.

<page-break/>

Хотя хозяин всячески старается хранить деликатесы наилучшим образом, они иногда все-таки портятся.
Однажды хозяин решил проанализировать сохранность продуктов, используя два вида показателей:
• Доля испорченных для каждого из пяти видов продуктов и для каждого склада, которая рассчитывалась как отношение количества испорченного продукта на данном складе к количеству данного продукта на данном складе.
• Общая доля испорченных продуктов для каждого склада, которая рассчитывалось как общее количество испорченных продуктов на складе к общему количеству всех продуктов на данном складе.
Выяснилось, что на складе 'B' доля испорченных продуктов каждого вида больше, чем на складе 'A'. При этом оказалось, что доля испорченных для каждого из пяти продуктов на складе B отличалась от доли испорченных для того же продукта на складе A одним и тем же множителем m>1, т.е. отношение долей испорченных продуктов для каждого из продуктов было одинаково.
Но самым удивительным было то, что общая доля испорченных продуктов на складе 'A' была больше, чем на складе 'B', и их отношение также было в точности равно m.
Оказывается, что эта странная ситуация не уникальна. Она может возникать при 35 различных значениях m>1, и при этом наименьшее общее количество испорченных продуктов на обоих складах вместе равно 215.
Найдите наибольшее количество упаковок, которое могло испортиться на обоих складах вместе в подобной удивительной ситуации.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.