img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 13
всего попыток: 49
Задача опубликована: 01.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Натуральные числа x, y и z являются последовательными членами арифметической прогрессии.

Для каждого n найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решений будет ровно 25. Минимальным таким n является 26880.

Найдите сумму всех n для которых ровно 25 решений, среди n меньших 1000000.

Задачу решили: 6
всего попыток: 25
Задача опубликована: 12.04.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 3 img
баллы: 300

Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.

Задачу решили: 8
всего попыток: 11
Задача опубликована: 10.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке.

Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313.

Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи.

А сколько обратимых чисел не превышает 1021?

Задачу решили: 15
всего попыток: 18
Задача опубликована: 31.05.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: falagar

Как известно, любое простое число p вида 4k+1 представимо в виде суммы двух квадратов натуральных чисел, причем единственным способом. Найдите такое представление для числа p=990702638520320711872233636311814629, то есть найдите такие натуральные числа x<y, что x2+y2=p. В ответе укажите x.

Задачу решили: 10
всего попыток: 14
Задача опубликована: 31.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: mogikanin (Максим Мирошников)

Легко видеть, что числа в первых пяти строках треугольника Паскаля не делятся на 5:

         1        
      1
  1
     
    1
   2   1
   
   1   3
   3   1
 
 1    4    6    4   1

Однако, рассмотрев первые сто строк, мы найдем, что 2800 чисел из 5050 кратны пяти.
Сколько чисел в первом миллиарде строк будут кратны пяти?

 

Задачу решили: 4
всего попыток: 4
Задача опубликована: 14.06.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

В числовом треугольнике, составленном из целых чисел, мы хотим найти такой числовой треугольник меньшего размера, чтобы сумма составляющих его чисел была максимальна.
В примере на рисунке красным цветом выделен такой максимальный треугольник. Сумма составляющих его чисел равна 42.


 
Теперь мы хотим решить эту задачу для треугольника побольше. Наш треугольник будет состоять из 1000 строк. Чтобы его заполнить, сгенерируем 500500 псевдослучайных чисел sk в диапазоне от -219 до 219, используя следующий линейно-конгруэнтный генератор псевдослучайных чисел:
t := 0
для k от 1 до 500500:
    t := (615949*t + 797807) (mod 220)
    sk := t-219

Тогда получим: s1 = 273519, s2 = -153582, s3 = 450905,  а исходный треугольник будет выглядеть следующим образом

 s1
ss
3
sss
6
ssss
10
...

Искомый треугольник может начинаться с любого числа и продолжаться сколь угодно далеко вниз, включая в себя два примыкающих элемента из следующей строки, три элемента из строки следующей за нею, и т.д. Определим сумму треугольника как сумму всех входящих в него элементов.
Найдите наибольшую сумму треугольника, для всех треугольников, которые можно построить указанным способом.

Задачу решили: 59
всего попыток: 88
Задача опубликована: 21.06.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Число X = (3232 + 44 -1) * 1616 + 88 -1 перевели из десятичной в двоичную систему счисления. Сколько единиц получилось в двоичной записи числа?

Задачу решили: 51
всего попыток: 92
Задача опубликована: 28.06.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: katalama (Иван Максин)

Цепочки цифр (строки) создаются по следующему правилу:
Первая строка состоит из двух цифр "1". Каждая из последующих цепочек создается такими действиями: берется цифра, на единицу большая максимальной цифры, использовавшейся в предыдущей строке. Эта цифра вставляется в начало, в конец и между всеми цифрами предыдущей строки. Вот первые 4 строки, созданные по этому правилу:
(1) 11
(2) 21212
(3) 32313231323
(4) 43424341434243414342434

Таким образом, было построено еще 5 строк и в результате получена строка, содержащая цифры от 1 до 9 и состоящая из 767 цифр. Введите в ответ число состоящие из цифр стоящих на 300-м и 301-м местах от начала.

Задачу решили: 6
всего попыток: 6
Задача опубликована: 05.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
Однако, перейдя в область комплексных чисел, мы найдем два корня: x=i и x=-i.
Уравнение (x-3)2=-4 имеет два решения: x=3+2i и x=3-2i. Их называют комплексно-сопряженными.
Гауссовыми целыми называют комплексные числа a+bi, у которых a и b целые. Обычные целые числа тоже, конечно, являются гауссовыми целыми с b=0. Чтобы отличить их от гауссовых целых с b≠0, мы будем называть их "рациональными целыми". Гауссово целое будем называть делителем рационального целого n, если частное также является гауссовым целым.
Например, если мы делим 5 на 1+2i, получим


Поскольку 1-2i – гауссово целое, число 1+2i является делителем 5.

С другой стороны, 1+i не является делителем 5, поскольку .

Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Таким образом, число 5 имеет ровно 6 делителей с положительной вещественной частью: {1, 1 + 2i, 1-2i, 2 + i, 2-i, 5}.
В таблице приведены все делители с положительной вещественной частью первых пяти положительных рациональных целых.

n Гауссовы делители с положительной
вещественной частью
Сумма этих делителей
s(n)
1 1 1
2 1, 1+i, 1-i, 2 5
3 1, 3 4
4 1, 1+i, 1-i, 2, 2+2i, 2-2i,4 13
5 1, 1+2i, 1-2i, 2+i, 2-i, 5 12

Для делителей с положительной вещественной частью .
Для 1 ≤ n ≤ 105, Σ s(n)=17924657155.
Найдите Σ s(n) для 1 ≤ n≤ 15·107.

Задачу решили: 11
всего попыток: 33
Задача опубликована: 12.07.10 08:00
Прислал: Anton_Lunyov img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Пусть d(n) обозначает число всех натуральных делителей натурального числа n. Найдите максимальное значение величины d(n)5/n, кодга n пробегает числа от 1 до 10100. Ответ округлите до ближайшего целого.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.