Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
13
всего попыток:
49
Натуральные числа x, y и z являются последовательными членами арифметической прогрессии. Для каждого n найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решений будет ровно 25. Минимальным таким n является 26880. Найдите сумму всех n для которых ровно 25 решений, среди n меньших 1000000.
Задачу решили:
6
всего попыток:
25
Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.
Задачу решили:
8
всего попыток:
11
Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке. Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313. Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи. А сколько обратимых чисел не превышает 1021?
Задачу решили:
15
всего попыток:
18
Как известно, любое простое число p вида 4k+1 представимо в виде суммы двух квадратов натуральных чисел, причем единственным способом. Найдите такое представление для числа p=990702638520320711872233636311814629, то есть найдите такие натуральные числа x<y, что x2+y2=p. В ответе укажите x.
Задачу решили:
10
всего попыток:
14
Легко видеть, что числа в первых пяти строках треугольника Паскаля не делятся на 5:
Однако, рассмотрев первые сто строк, мы найдем, что 2800 чисел из 5050 кратны пяти.
Задачу решили:
4
всего попыток:
4
В числовом треугольнике, составленном из целых чисел, мы хотим найти такой числовой треугольник меньшего размера, чтобы сумма составляющих его чисел была максимальна.
s1 Искомый треугольник может начинаться с любого числа и продолжаться сколь угодно далеко вниз, включая в себя два примыкающих элемента из следующей строки, три элемента из строки следующей за нею, и т.д. Определим сумму треугольника как сумму всех входящих в него элементов.
Задачу решили:
59
всего попыток:
88
Число X = (3232 + 44 -1) * 1616 + 88 -1 перевели из десятичной в двоичную систему счисления. Сколько единиц получилось в двоичной записи числа?
Задачу решили:
51
всего попыток:
92
Цепочки цифр (строки) создаются по следующему правилу: Таким образом, было построено еще 5 строк и в результате получена строка, содержащая цифры от 1 до 9 и состоящая из 767 цифр. Введите в ответ число состоящие из цифр стоящих на 300-м и 301-м местах от начала.
Задачу решили:
6
всего попыток:
6
Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
С другой стороны, 1+i не является делителем 5, поскольку . Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Для делителей с положительной вещественной частью . Для 1 ≤ n ≤ 105, Σ s(n)=17924657155. Найдите Σ s(n) для 1 ≤ n≤ 15·107.
Задачу решили:
11
всего попыток:
33
Пусть d(n) обозначает число всех натуральных делителей натурального числа n. Найдите максимальное значение величины d(n)5/n, кодга n пробегает числа от 1 до 10100. Ответ округлите до ближайшего целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|