Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
21
всего попыток:
48
Индийский математик Д. Р. Капрекар известен своими работами по теории чисел. Одна из его работ посвящена так называемому преобразованию Капрекара. Рассмотрим следующую операцию. Пусть задано число x. Пусть M - наибольшее число, которое можно получить из x перестановкой его цифр, а m - наименьшее число (это число может содержать ведущие нули). Обозначим как K(x) разность M - m, дополненную при необходимости ведущими нулями так, чтобы число цифр в ней было равно числу цифр в x.
Задачу решили:
54
всего попыток:
91
Найти миниальное n такое, что: 1+1/2+1/3+1/4+...+1/n > 16.
Задачу решили:
26
всего попыток:
64
Сколько чисел начинается с цифры 1 среди чисел 2n, где n=0, 1,...,109?
Задачу решили:
2
всего попыток:
4
Для двух натуральных чисел a и b определим последовательность Улама следующим образом:
Задачу решили:
37
всего попыток:
45
Найдите минимальное n при котором в записи 3n числа имеется 7 подряд идущих нулей.
Задачу решили:
68
всего попыток:
82
Найдите наименьшее натуральное n такое, что в десятичной записи числа 7n содержится не менее 7 семерок.
Задачу решили:
1
всего попыток:
2
Найдите количество различных троек натуральных чисел x < y < z < 107 таких, что xn+yn=zm (n и m - натуральные, n>2, m>1).
Задачу решили:
4
всего попыток:
23
Есть N2 ферзей N разных определённых цветов, по N ферзей каждого цвета. Обозначим как X(N) количество способов расставить все эти ферзи на шахматной доске размера N на N так, чтобы ферзи одного цвета не находились под ударом друг друга. Чему равна сумма X(3) + X(4) + X(5) + X(6) + X(7) + X(8) + X(9) + X(10)? (Координаты клеток доски, а также цвета ферзей, однозначно определены, поэтому разные позиции, подучающиеся одна от другой поворотом, симметрическим отображением или сменой цветов, считаются разными).
Задачу решили:
11
всего попыток:
17
Пусть (x1, x2, ... , xm) – такой набор положительных вещественных чисел, для которого выполняется условие x12 + x22 + ... + xm2 = m, а произведение Pm = x1 * x22 * ... * xmm принимает максимальное значение. Можно проверить, что [P10] = 64 (здесь скобки [ ] означают целую часть числа).
Задачу решили:
3
всего попыток:
9
Возьмем вещественное число x.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|