Лента событий:
TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
2
В данной задаче мы будем рассматривать "ориентированные" тетраэдры, координаты вершин которых имеют вид:
Задачу решили:
1
всего попыток:
1
Обозначим через f(n) количество способов, которыми можно построить башню 3×3×n из блоков 2×1×1. Блоки можно вращать произвольным образом. При этом башни, отличающиеся поворотом или симметрией, считаются различными. Например, f(2) = 229, f(4) = 117805, f(6) = 64647289, f(63) mod 123456789 = 75292539, f(66) mod 123456789 = 56150940. Здесь a mod q означает остаток от деления a на q. Найдите f(612345) mod 123456789.
Задачу решили:
2
всего попыток:
3
Сферическим треугольником называют фигуру на поверхности сферы, ограниченную дугами больших кругов, имеющими попарно общие концы.
Пусть C(r) – сфера с центром в начале координат (0,0,0) и радиусом r. Пусть Z(r) – множество точек сферы C(r) с целыми координатами. Пусть T(r) – множество сферических треугольников с вершинами, принадлежащими Z(r). Вырожденные сферические треугольники с вершинами, принадлежащими одному большому кругу, не включаются в T(r). Пусть A(r) – наименьшая площадь треугольника из T(r), а B(r) =(4πr2)/A(r) – величина, обратная доле площади сферы, которую занимает наименьший сферический треугольник. Например, A(14) ≈3,294040, а B(14) ≈ 748. Найдите максимальное значение B(r) для натуральных r, не превышающих 50. Результат округлите до ближайшего целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|