img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 12
всего попыток: 34
Задача опубликована: 16.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 200
Лучшее решение: Alias_Prudaev

На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?

Задачу решили: 13
всего попыток: 34
Задача опубликована: 19.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На плоскости нарисована пятиконечная звезда  с центром в начале координат и одной вершиной в точке с координатами (100,0). Сколько точек с целочисленными координатами находится внутри звезды?

Задачу решили: 10
всего попыток: 36
Задача опубликована: 30.11.09 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Первое, что приходит в голову, когда нужно возвести число в 15-ю степень, это просто выполнить четырнадцать умножений:

n ? n ? ... ? n = n15

Если использовать "бинарный" метод, того же результата можно достичь, выполнив всего шесть умножений:

n ? n = n2
n2 ? n2 = n4
n4 ? n4 = n8
n8 ? n4 = n12
n12 ? n2 = n14
n14 ? n = n15

Но оказывается, что количество умножений можно сократить до пяти:

n ? n = n2
n2 ? n = n3
n3 ? n3 = n6
n6 ? n6 = n12
n12 ? n3 = n15

Определим m(k) как минимальное количество умножений, необходимое для вычисления nk; например, m(15) = 5.

Найдите наименьшее значение k, для которого m(k)=12.

Задачу решили: 28
всего попыток: 53
Задача опубликована: 02.12.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите сумму первых 2010 цифр после запятой произведения e·π (e - основание натурального логарифма).

Задачу решили: 22
всего попыток: 67
Задача опубликована: 07.12.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти сумму цифр первого простого натурального числа содержащего 2010 цифр.

Задачу решили: 18
всего попыток: 19
Задача опубликована: 07.12.09 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Обозначим через pn n-ое простое число, а через rn- остаток от деления (pn-1)n + (pn+1)n на pn2.
Например, при n = 3, p3 = 5, и 43 + 63 = 280 5 mod 25.
Наименьшее значение n, при котором остаток rn превышает 109 равно 7037.
Найдите наименьшее значение n, для которого rn >1011.

Задачу решили: 63
всего попыток: 84
Задача опубликована: 10.12.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найти наименьшее n, для которого n! имеет не менее 2010 цифр.

Задачу решили: 37
всего попыток: 106
Задача опубликована: 14.12.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Anton_Lunyov

Сколько раз с 2010 года по 20102010 год 1 января будет пятницей? 

Задачу решили: 15
всего попыток: 19
Задача опубликована: 14.12.09 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Радикалом числа n, rad(n), называют произведение различных простых делителей числа n. Например 1008 = 24×32×7, следовательно rad(1008) = 2×3×7 = 42.

Если мы вычислим все rad(n) для 1 ≤ n ≤10, отсортируем их по значению rad(n), а затем по значению n (при равных rad(n)), то получим:

До сортировки
 
После сортировки

n

rad(n)


n

rad(n)

k
1
1
 
1
1
1
2
2
 
2
2
2
3
3
 
4
2
3
4
2
 
8
2
4
5
5
 
3
3
5
6
6
 
9
3
6
7
7
 
5
5
7
8
2
 
6
6
8
9
3
 
7
7
9
10
10
 
10
10
10

Обозначим через E(k) k-ый элемент в отсортированной колонке n, например, E(4) = 8 и E(6) = 9.

Если rad(n) отсортирован для 1 ≤ n ≤ 100000, найдите сумму всех E(k) для 1 ≤ k ≤ 50000.

Задачу решили: 39
всего попыток: 56
Задача опубликована: 17.12.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: vsg (Виталий Гарнашевич)

Найти сумму первых 2010 цифр после запятой числа:

1/2+1/3+1/4+...+1/2009+1/2010

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.