Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
6
всего попыток:
6
Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
С другой стороны, 1+i не является делителем 5, поскольку . Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Для делителей с положительной вещественной частью . Для 1 ≤ n ≤ 105, Σ s(n)=17924657155. Найдите Σ s(n) для 1 ≤ n≤ 15·107.
Задачу решили:
3
всего попыток:
9
Возьмем вещественное число x.
Задачу решили:
9
всего попыток:
16
Для некоторых натуральных чисел k можно подобрать такое вещественное число t, чтобы выполнялось равенство Как мы видим, для некоторых k, например для k=2, t оказывается целым, а для других – нет. P(5) = 1/1 Найдите сумму всех m, для которых P(m)=1/7777.
Задачу решили:
5
всего попыток:
8
Функция бланманже определена на промежутке [0, 1] следующим образом: Построим теперь круг C с центром в точке (3/8, 1/2) и радиусом 3/8.
Задачу решили:
5
всего попыток:
5
Для целого n≥4 определим нижний простой квадратный корень из n как наибольшее простое число, не превышающее √n. Обозначим это число через lps(n).
Задачу решили:
10
всего попыток:
16
Решите уравнение относительно r: Результат округлите до целого.
Задачу решили:
3
всего попыток:
12
На складах 'A' и 'B' хранятся деликатесы в следующих количествах:
Обратите внимание на то, что количество каждого продукта измеряется упаковками, т.е. целым числом. <page-break/> Хотя хозяин всячески старается хранить деликатесы наилучшим образом, они иногда все-таки портятся.
Задачу решили:
3
всего попыток:
3
Построим последовательность случайных чисел sn при помощи генератора Блюм-Блюма-Шуба:
Например, Можно показать, что среди значений p(k) для 0<k≤103 найдется 614 нечетных и 386 четных.
Задачу решили:
8
всего попыток:
16
Дроби, у которых числитель меньше знаменателя, называют правильными. Для каждого знаменателя d существует d-1 правильная дробь. Например, для d=15 это 1/15 , 2/15 , 3/15 , 4/15 , 5/15 , 6/15 , 7/15 , 8/15 , 9/15 , 10/15, 11/15, 12/15, 13/15, 14/15. Из 14 правильных дробей со знаменателем 15 лишь 8 оказываются несократимыми. Назовем коэффициентом несократимости R(d) знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d. Например, R(15)= 8/14 =4/7. Заметим, что d=15 – это наименьший нечетный знаменатель, для которого R(d)<2/3. Найдите наименьший нечетный знаменатель d, для которого R(d)< 19945/60961.
Задачу решили:
3
всего попыток:
5
Назовем коэффициентом несократимости знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d, например R(12) = 4⁄11. R(d)= φ(d)/(d – 1), где φ – функция Эйлера. Теперь определим коэффициент сократимости C(d): C(d)= (d-φ(d))/(d – 1 ) C(p)=1/(p-1) Существует ровно 2 составных d<100, для которых C(d) является дробью с числителем, равным 1: это 15 и 85.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|