img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 1
всего попыток: 2
Задача опубликована: 17.01.11 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100

Найдите количество различных троек натуральных чисел x < y  < z < 107 таких, что xn+yn=zm (n и m - натуральные, n>2, m>1).

Задачу решили: 20
всего попыток: 32
Задача опубликована: 24.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Полупростым называется натуральное число, представимое в виде произведения двух простых чисел (не обязательно различных), например, 15 = 3 × 5; 9 = 3 × 3; 22 = 2 × 11.
Существует ровно десять полупростых чисел, не превышающих 30: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26. Их сумма равна 152.
Найдите сумму полупростых чисел, не превышающих 108.

Задачу решили: 8
всего попыток: 29
Задача опубликована: 24.01.11 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Рассмотрим различные тройки взаимно простых натуральных чисел x < y  < z < 107 таких, что x2+y2=z2. Найдите количество натуральных чисел p < 107, которые не входят ни в одну такую тройку.

Задачу решили: 25
всего попыток: 58
Задача опубликована: 31.01.11 08:00
Прислал: admin img
Вес: 2
сложность: 3 img
класс: 8-10 img
баллы: 100

В ряду 2, 3, 4, 5, 6, 8, 9, 10, 12, 15,... представлены числа, которые имеют простые делители только числа 2, 3 и 5. Продолжите этот ряд и найдите число в этом ряду, которое находится на месте с номером 10000

Задачу решили: 9
всего попыток: 13
Задача опубликована: 31.01.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Операция возведения в сверхстепень, или тетрация, обозначается как a↑↑b или ba, и определяется для натуральных a и b следующим образом:
a↑↑1 = a,
a↑↑(k+1) = a (a↑↑k).
Так, 3↑↑2 = 33 = 27, отсюда 3↑↑3 = 327 = 7625597484987, а 3↑↑4 примерно равно 103638334640024,1.
Найдите 8 последних цифр числа 2011 ↑↑ (2011 ↑↑ 2011).

Задачу решили: 4
всего попыток: 23
Задача опубликована: 07.02.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

Есть N2 ферзей N разных определённых цветов, по N ферзей каждого цвета. Обозначим как X(N) количество способов расставить все эти ферзи на шахматной доске размера N на N так, чтобы ферзи одного цвета не находились под ударом друг друга. Чему равна сумма X(3) + X(4) + X(5) + X(6) + X(7) + X(8) + X(9) + X(10)? (Координаты клеток доски, а также цвета ферзей, однозначно определены, поэтому разные позиции, подучающиеся одна от другой поворотом, симметрическим отображением или сменой цветов, считаются разными).

Задачу решили: 11
всего попыток: 17
Задача опубликована: 10.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: levvol

Пусть (x1, x2, ... , xm) – такой набор положительных вещественных чисел, для которого выполняется условие x12 + x22 + ... + xm2 = m, а произведение Pm = x1 * x22 * ... * xmm принимает максимальное значение. Можно проверить, что [P10] = 64 (здесь скобки [ ] означают целую часть числа).
А чему равно [P25]?

Задачу решили: 12
всего попыток: 16
Задача опубликована: 14.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В одном университете очень строго следят за посещаемостью и дисциплиной. Если в контрольный  период студент хотя бы дважды опаздывает или в течение любых трех дней подряд хотя бы дважды прогуливает, то его лишают стипендии.
Если контрольный период продолжается n дней, то его можно зашифровать строкой из n символов, используя букву L для опозданий, A для прогулов и O для дней, когда студент приходил на занятия вовремя.
Из 81 возможной строки для 4-дневного зачетного периода стипендиальным требованиям удовлетворяют 24 строки:

OOOO OOOA OOOL OOAO OOAL OOLO OOLA OAOO OAOL OALO OLOO OLOA OLAO AOOO AOOA AOOL AOLO AOLA ALOO ALOA LOOO LOOA LOAO LAOO

А сколько строк удовлетворяет стипендиальным требованиям для 30-дневного зачетного периода?

+ 13
  
Задачу решили: 34
всего попыток: 54
Задача опубликована: 14.02.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На Олимпиаде в Индии, которую проводил Маугли, в забегах приняли участие все животные - и жалкие дождевые черви, и вожак стаи старый Акелла, и даже злобный Шер-Хан. Их оказалось очень много - ровно 1 миллиард. Все животные получили последовательные номера от единицы и до одного миллиарда.

После первого забега победили участники у которых были нечетные номера, их заново пронумеровали - 1-й сохранил свой номер, участник с номером 3-й номер стал 2-м, с номером 5 - стал 3-м и так далее, проигрывшие выбыли из соревнования.

Во втором забеге победили все участники, которые имели четные номера, их также заново пронумеровали: 2-й стал 1-м, 4-й - 2-м, 6-й - 3-м и так далее.

Как потом выяснилось, и далее в нечетных забегах побеждали участники с нечетными номерами, а в четных - с четными, и каждый раз после очередного забега участников перенумеровывали по той же схеме.

В конце концов победила хитрая Багира. Выясните какой у нее был номер в начале сревнований?

Задачу решили: 3
всего попыток: 9
Задача опубликована: 18.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем вещественное число x.
Наилучшим его приближением со знаменателем, не превышающим d, назовем несократимую дробь r/s (s≤d), такую, что у любого рационального числа, лежащего ближе к x, чем r/s, знаменатель будет больше, чем d:
|p/q-x| < |r/s-x| => q>d.
Например, наилучшим приближением числа √13 со знаменателем, не превышающим 20, будет дробь 18/5. А наилучшим приближением того же числа, но со знаменателем, не превышающим 30, будет 101/28.
Найдите сумму знаменателей наилучших приближений √n со знаменателем, не большим, чем 1012, для всех простых чисел n, не превышающих 100000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.