Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
5
Пусть a, b, c – натуральные числа, а функция F(n) определена следующим образом:
Задачу решили:
5
всего попыток:
6
Возьмем натуральное число k, и будем выписывать последовательность рациональных чисел ai = xi/yi следующим образом: 1/20 → 2/19 → 3/18 = 1/6 → 2/5 → 3/4 → 4/3 → 5/2 → 6/1 = 6 Поэтому f(20) = 6. Можно проверить, что f(2) = 2, f(3) = 1 и Σf(k3) = 18764 для простых k, не превышающих 100. Найдите Σf(k3) для простых k, не превышающих 5×106.
Задачу решили:
0
всего попыток:
3
Пусть a(n) – наибольший корень многочлена P(x) = x3 - 3nx2 + n, например a(2)=8,97517184... Найдите восемь младших десятичных знаков суммы ∑t(i,333333333) для i=1,2,3,...30.
(5.94338091)
Задачу решили:
10
всего попыток:
12
Возьмем натуральное число n и рассмотрим последовательность s(n)={1+n/1, 2+n/2, 3+n/3, …k+n/k,…}. Если эта последовательность не содержит целых составных чисел, будем говорить, что число n не порождает составных.
Задачу решили:
2
всего попыток:
3
Для каждого натурального n определим функцию f(n) как количество хорд параболы y=x², концы которых имеют целочисленные координаты, и квадрат длины которых равен n. Например, f(4)=1, f(2)=2, f(3)=0 и f(50)=4. На рисунке изображены 4 хорды с целочисленными координатами концов и квадратом длины равным 50. Найдите наименьшее число n, для которого f(n)=8.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|