Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
63
всего попыток:
143
Найдите наибольшее целое число, десятичная запись которого обладает следующими свойствами: 1) она не заканчивается 0; 2) в результате вычёркивания одной из её цифр — но не первой — получается делитель исходного числа (точнее, его десятичная запись).
Задачу решили:
50
всего попыток:
188
У выпуклого многогранника 2010 рёбер. Какое наибольшее число из них могут пересекать плоскость, не проходящую через вершины многогранника?
Задачу решили:
26
всего попыток:
42
Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?
Задачу решили:
61
всего попыток:
254
Конечная арифметическая прогрессия с ненулевой разностью состоит из целых положительных чисел, десятичная запись каждого из которых не содержит ни одной девятки. Найдите наибольшее число членов в такой прогрессии.
Задачу решили:
164
всего попыток:
421
На какое наименьшее число равных пирамид можно разрезать куб?
Задачу решили:
77
всего попыток:
155
Футбольный мяч сшит из пятиугольников и шестиугольников, длины всех сторон которых одинаковы. Все многоугольники сшиваются сторона к стороне так, что к каждой вершине примыкают два шестиугольника и один пятиугольник. Среди пятиугольников есть белые и чёрные. Известно, что каждый шестиугольник примыкает хотя бы к одному чёрному пятиугольнику. Найдите наименьшее число чёрных пятиугольников.
Задачу решили:
104
всего попыток:
214
На доске в строчку выписаны пять неотрицательных целых чисел A, B, C, D и E, сумма которых равна 2010. Найдите наибольшее значение суммы AB+BC+CD+DE попарных произведений соседних чисел.
Задачу решили:
51
всего попыток:
346
В квадратной таблице 10×10 написаны все целые числа от 1 до 100 — по одному числу в каждой ячейке — так, что числа, отличающиеся друг от друга на ±1, стоят в соседних (по горизонтали или по вертикали) ячейках. Найдите наименьшую сумму 10 чисел, стоящих на диагонали таблицы.
Задачу решили:
71
всего попыток:
209
В команде 12 мотоциклистов. Тренер дал им задание ездить по кольцевой трассе в одном и том же направлении с разными постоянными скоростями, но обгонять друг друга разрешил только в одном месте трассы, отметив его флажком. Какое наибольшее число членов команды смогут (неограниченно долго) выполнять такое странное задание тренера?
Задачу решили:
152
всего попыток:
383
Решите уравнение . В ответе укажите количество его целых решений.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|