img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 63
всего попыток: 143
Задача опубликована: 29.01.10 22:37
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите наибольшее целое число, десятичная запись которого обладает следующими свойствами: 1) она не заканчивается 0; 2) в результате вычёркивания одной из её цифр — но не первой — получается делитель исходного числа (точнее, его десятичная запись).

Задачу решили: 135
всего попыток: 195
Задача опубликована: 03.02.10 00:38
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Mnohogrannik

В сплошном шаре сверлится вертикальное цилиндрическое отверстие, ось которого проходит через центр шара. Высота полученного тела равна 6 см. Сколько см3 составляет его объём? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 50
всего попыток: 188
Задача опубликована: 04.02.10 17:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

У выпуклого многогранника 2010 рёбер. Какое наибольшее число из них могут пересекать плоскость, не проходящую через вершины многогранника?

Задачу решили: 26
всего попыток: 42
Задача опубликована: 07.02.10 00:11
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Anton_Lunyov

Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?

Задачу решили: 61
всего попыток: 254
Задача опубликована: 08.02.10 21:49
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Конечная арифметическая прогрессия с ненулевой разностью состоит из целых положительных чисел, десятичная запись каждого из которых не содержит ни одной девятки. Найдите наибольшее число членов в такой прогрессии.

Задачу решили: 164
всего попыток: 421
Задача опубликована: 18.02.10 08:00
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На какое наименьшее число равных пирамид можно разрезать куб?

Задачу решили: 127
всего попыток: 209
Задача опубликована: 26.02.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Father

В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)

Задачу решили: 77
всего попыток: 155
Задача опубликована: 02.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Футбольный мяч сшит из пятиугольников и шестиугольников, длины всех сторон которых одинаковы. Все многоугольники сшиваются сторона к стороне так, что к каждой вершине примыкают два шестиугольника и один пятиугольник. Среди пятиугольников есть белые и чёрные. Известно, что каждый шестиугольник примыкает хотя бы к одному чёрному пятиугольнику. Найдите наименьшее число чёрных пятиугольников.

Задачу решили: 56
всего попыток: 159
Задача опубликована: 19.03.10 08:00
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Функция ƒ, определённая на всех векторах трёхмерного пространства, такова, что для любых действительных чисел a, b и любых векторов x, y выполняется неравенство

ƒ(ax+by) ≤ max {ƒ(x), ƒ(y)}.

Какое наибольшее число различных значений может принимать функция ƒ?

Задачу решили: 104
всего попыток: 214
Задача опубликована: 05.04.10 08:00
Прислал: demiurgos img
Источник: Н.Б.Васильев, В.Л.Гутенмахер, Ж.М.Раббот, А.Л...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Anton_Lunyov

На доске в строчку выписаны пять неотрицательных целых чисел A, B, C, D и E, сумма которых равна 2010. Найдите наибольшее значение суммы AB+BC+CD+DE попарных произведений соседних чисел.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.