Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
160
всего попыток:
618
Сначала первая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Потом вторая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Наконец, третья труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. В результате бассейн оказался наполненным за 2 часа. За сколько минут все три трубы наполняют бассейн, если работают одновременно?
Задачу решили:
271
всего попыток:
611
Проволочный каркас куба с ребром длиной 10 см вымазан мёдом. Сидящая в вершине муха хочет проползти по всем сладким рёбрам, чтобы съесть весь мёд. Какое минимальное количество сантиметров её придётся для этого преодолеть?
Задачу решили:
269
всего попыток:
324
В качестве первого члена последовательности возьмём любое натуральное число, кратное трём. Все остальные её члены получаются по правилу: каждое следующее число равно сумме кубов всех цифр предыдущего. Оказывается, что в любой такой последовательности рано или поздно появляется некое число, которое уже не меняется. Найдите это число.
Задачу решили:
132
всего попыток:
440
Обычные автобусы ходят по кольцевому маршруту с интервалом 8 минут и проезжают один круг за 2 часа. А экспрессы ходят с интервалом 15 минут, но идут они быстрее и проезжают один круг за 1 час. Сколько встречных экспрессов увидит водитель обычного автобуса за время своего движения по всему маршруту? (Имеется в виду число встреч, а не разных автобусов.)
Задачу решили:
79
всего попыток:
206
На доске выписаны в ряд нули и единицы (встречаются и те, и другие). Любые две цифры, между которыми написано 10 или 15 цифр, совпадают. Каково максимально возможное число цифр на доске?
Задачу решили:
127
всего попыток:
200
От пристани А вниз по течению реки отправились одновременно катер и плот. Доплыв до пристани Б, катер немедленно повернул обратно и встретил плот ровно через 3 часа после отплытия от А. Доплыв до А, катер снова повернул и догнал плот ещё через 2 часа после первой встречи с ним. Через сколько минут после второй встречи с плотом катер причалит к Б?
Задачу решили:
91
всего попыток:
208
Погремушка состоит из синего кольца и надетых на него двенадцати шариков: девяти красных и трёх жёлтых. Сколько может быть выпущено различных погремушек? (Погремушка не меняется при её переворачивании и передвижении шариков по кольцу.)
Задачу решили:
161
всего попыток:
280
На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три?
Задачу решили:
340
всего попыток:
483
Из ряда натуральных чисел от 1 до 2009 вычеркнули все нечётные числа. Из оставшихся вычеркнули числа, стоявшие на нечётных местах. Эту процедуру повторяли до тех пор, пока не осталось только одно число. Найдите его.
Задачу решили:
181
всего попыток:
270
Перед Вами тортик в форме куба, который нужно разрезать на 27 одинаковых кубиков. Какое наименьшее число разрезов Вам понадобится сделать, если разрешается резать сразу несколько кусков, которые перед этим можно как угодно переложить и перевернуть? (Каждый разрез осуществляется вдоль одной плоскости.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|