Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
98
всего попыток:
138
На n карточках написаны все числа от 1 до n (на каждой карточке — одно число). Карточки разложили на две стопки так, что сумма номеров любых двух карточек, лежащих в одной стопке, не является квадратом целого числа. Найти наибольшее значение n.
Задачу решили:
24
всего попыток:
35
Большой прямоугольник разрезан на конечное число маленьких. (Стороны всех прямоугольников вертикальны или горизонтальны.) Известно, что у каждого маленького прямоугольника длина хотя бы одной стороны — целое число. Верно ли, что тогда и у большого прямоугольника хотя бы одна сторона имеет целую длину? (Если верно — доказать, если нет — привести пример.)
Задачу решили:
134
всего попыток:
222
Найти наименьшее значение r, при котором справедливо утверждение: любая замкнутая плоская ломаная длины 60 лежит в круге радиуса r.
Задачу решили:
155
всего попыток:
364
Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)
Задачу решили:
80
всего попыток:
150
Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).
Задачу решили:
44
всего попыток:
237
Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.
Задачу решили:
139
всего попыток:
164
На сторонах BC и CD квадрата ABCD выбраны точки E и F так, что периметр треугольника ECF равен половине периметра квадрата. Найдите величину угла EAF в градусах.
Задачу решили:
98
всего попыток:
201
Последовательность определяется условиями: x1=2009; x2=2010; xn+1=xn−1−1/xn при n>1. Найдите n, при котором xn=0.
Задачу решили:
74
всего попыток:
243
По аллее длиной 100 метров гуляют старичок и старушка. Дойдя до конца аллеи каждый из них сразу же поворачивает обратно. Скорость старичка √2 км/ч, а старушки — 3 км/ч. В какой-то момент они оказались в противоположных концах аллеи. Сколько раз они встретятся в течение часа после этого? А сколько раз старушка обгонит старичка? В ответе укажите произведение двух полученных чисел. (Обгон встречей не является.)
Задачу решили:
85
всего попыток:
238
Найти такое наименьшее число n, что любой выпуклый 60-угольник является пересечением n треугольников.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|