img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 123
всего попыток: 390
Задача опубликована: 29.05.09 17:49
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В стране 21 аэропорт. Авиационное сообщение между ними осуществляют несколько авиакомпаний, каждой из которых разрешается совершать любые рейсы между 5 аэропортами. При каком наименьшем числе авиакомпаний можно перелететь из любого аэропорта в любой другой без пересадки?

Задачу решили: 76
всего попыток: 262
Задача опубликована: 05.06.09 17:15
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

В далёкой стране к власти пришёл военный диктатор, который хочет стать президентом, победив на демократических выборах, организованных по следующей системе. В первом туре все избиратели объединяются в равные по численности группы, и от каждой группы большинством голосов избирается представитель для голосования во втором туре. Во втором туре все избранные в первом туре представители объединяются в равные группы и в каждой группе выбирают её представителя для голосования в третьем туре. И так далее: в последнем туре представители избирают президента. В стране ровно 5 760 000 избирателей, среди которых n человек безоговорочно поддерживают диктатора (поскольку состоят в регулярной армии). При каком минимальном n можно так организовать выборы, чтобы диктатор гарантированно был избран президентом? (При равенстве голосов в следующий тур проходят независимые кандидаты.)

Диктатор сам заранее определяет количество туров и сколько представителей будут содержать группы в каждом туре — это число может меняться от тура к туру; он также может распределить своих сторонников по группам так, как ему выгодно. Любой избиратель может голосовать за себя, а сам диктатор входит в число n своих сторонников.

Задачу решили: 163
всего попыток: 214
Задача опубликована: 09.06.09 01:22
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Среди участников шахматного турнира юношей было в 7 раз больше, чем девушек, и они вместе набрали в 3 раза больше очков, чем все девушки. Сколько девушек участвовали в турнире? (Турнир проводился по круговой системе: каждый играл с каждым по две партии — одну белыми, а другую чёрными; за выигрыш партии участник получал одно очко, за ничью — 1/2 очка, за проигрыш — 0.)

Задачу решили: 19
всего попыток: 473
Задача опубликована: 10.06.09 16:27
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями?

Задачу решили: 198
всего попыток: 360
Задача опубликована: 11.06.09 22:06
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: azat

На какое максимальное число частей могут делить пространство сфера и поверхность куба?

Задачу решили: 89
всего попыток: 652
Задача опубликована: 14.06.09 15:23
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

На билете лотереи имеется 60 пустых клеток. Участник лотереи записывает в каждую клетку билета по одному числу от 1 до 60 без повторений. (Билет, заполненный с повторениями, считается недействительным.)  Организаторы лотереи по тем же правилам заполняют свой билет–эталон. Выигрывают те билеты, у  которых хотя бы в одной клетке записано то же число, что и в той же клетке билета–эталона. Какое наименьшее число билетов должен заполнить участник лотереи, чтобы обеспечить себе выигрыш независимо от того, как будет заполнен билет–эталон?

Задачу решили: 228
всего попыток: 410
Задача опубликована: 21.06.09 23:21
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

Найдите трёхзначное число, имеющее наибольшее число различных делителей.

Задачу решили: 59
всего попыток: 391
Задача опубликована: 29.06.09 15:52
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В пространстве даны шар и три различные плоскости, возможно его пересекающие. Каково максимально возможное число разных способов, которыми можно разместить в пространстве второй шар так, чтобы он касался первого и трёх данных плоскостей?

Задачу решили: 147
всего попыток: 205
Задача опубликована: 08.07.09 00:31
Прислал: demiurgos img
Источник: А.К.Толпыго "1000 задач"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.