img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Три числа и степени" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 203
всего попыток: 774
Задача опубликована: 29.06.09 15:52
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: x12 (Дмитрий Коба)

Пробирка, содержащая посев бактерий, затерялась среди 1000 других таких же пробирок с похожей, но стерильной жидкостью. В лаборатории есть 10 мышей, у которых признаки заболевания появляются не позже, чем через 24 часа после заражения этими бактериями. Нужно как можно быстрее найти пробирку с бактериями. Сколько часов потребуется для этого? (Чтобы заразить одну мышь, достаточно микроскопической дозы посева.)

Задачу решили: 132
всего попыток: 440
Задача опубликована: 04.09.09 14:20
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: jliakhov (Юлия Ляховицкая)

Обычные автобусы ходят по кольцевому маршруту с интервалом 8 минут и проезжают один круг за 2 часа. А экспрессы ходят с интервалом 15 минут, но идут они быстрее и проезжают один круг за 1 час. Сколько встречных экспрессов увидит водитель обычного автобуса за время своего движения по всему маршруту? (Имеется в виду число встреч, а не разных автобусов.)

Задачу решили: 79
всего попыток: 206
Задача опубликована: 03.10.09 08:35
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На доске выписаны в ряд нули и единицы (встречаются и те, и другие). Любые две цифры, между которыми написано 10 или 15 цифр, совпадают. Каково максимально возможное число цифр на доске?

Задачу решили: 88
всего попыток: 441
Задача опубликована: 05.10.09 10:27
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

На шахматной доске стоят 64 ладьи (на каждой клетке по ладье). Саша снимает их с доски по очереди, следуя правилу: можно снять любую ладью, которая бьёт нечётное число других оставшихся на доске ладей. Какое максимальное количество ладей удастся снять Саше? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)

Задачу решили: 127
всего попыток: 200
Задача опубликована: 16.10.09 17:06
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

От пристани А вниз по течению реки отправились одновременно катер и плот. Доплыв до пристани Б, катер немедленно повернул обратно и встретил плот ровно через 3 часа после отплытия от А. Доплыв до А, катер снова повернул и догнал плот ещё через 2 часа после первой встречи с ним. Через сколько минут после второй встречи с плотом катер причалит к Б?

Задачу решили: 161
всего попыток: 280
Задача опубликована: 28.10.09 19:31
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три? 

Задачу решили: 340
всего попыток: 483
Задача опубликована: 13.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Из ряда натуральных чисел от 1 до 2009 вычеркнули все нечётные числа. Из оставшихся вычеркнули числа, стоявшие на нечётных местах. Эту процедуру повторяли до тех пор, пока не осталось только одно число. Найдите его.

Задачу решили: 72
всего попыток: 156
Задача опубликована: 28.12.09 22:51
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Дурацкое домино похоже на обычное, но состоит из 36 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 7: 0-0, 0-1, 0-2,...,0-7, 1-1, 1-2,... Найдите наименьшее число цепочек, в которые можно выложить все кости дурацкого домино по обычному правилу — кости в цепочке прилегают друг к другу одинаковыми числами, например: 0-1, 1-1, 1-3, 3-7, 7-4. (Обычное домино состоит из 28 костей, на которых написаны все различные пары целых чисел от 0 до 6, все его кости можно выложить в одну цепочку.)

Задачу решили: 123
всего попыток: 168
Задача опубликована: 20.01.10 22:56
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: xyz (Анна Андреева)

Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.

Задачу решили: 80
всего попыток: 576
Задача опубликована: 13.02.10 17:39
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наименьшее число матчей нужно провести, чтобы из 24 теннисистов гарантированно определить двух сильнейших, т.е. честно разыграть между всеми участниками I и II места? (Любые два участника играют в разную силу; в каждом матче побеждает сильнейший; если А сильнее Б, а Б сильнее В, то А сильнее В.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.