Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
113
всего попыток:
437
Четыре друга — Алёша, Боря, Валера и Гриша — бегали на лыжах по кругу. Алёша бежал быстрее Бори, Боря быстрее Валеры, а Валера быстрее Гриши. Стартовали и финишировали друзья одновременно, но Алёша 1 раз обогнал Борю, Боря 1 раз обогнал Валеру, а Валера 1 раз обогнал Гришу. Сколько раз Алёша обогнал Гришу?
Задачу решили:
125
всего попыток:
355
Решите неравенство . В ответе укажите число его целых решений.
Задачу решили:
164
всего попыток:
347
Сумма нескольких натуральных чисел равна 25. Найдите наибольшее возможное значение их произведения.
Задачу решили:
163
всего попыток:
284
Саша и Наташа обычно встречаются в метро — Саша приходит на платформу и ждёт, пока приедет Наташа. Один раз Саша ждал Наташу 8 минут, и она приехала в 3-м по счёту поезде. В другой раз он ждал её 14 минут, а приехала она в 6-м поезде. В третий раз Саша прождал Наташу 20 минут. В каком по счёту поезде она приехала? (Поезда ходят через равные промежутки времени.)
Задачу решили:
46
всего попыток:
155
Дано: N=a1+a2+...+a2010=b1+b2+...+b2011, все числа a1, a2, ..., a2010 — натуральные и имеют одну и ту же сумму цифр A, все числа b1, b2, ..., b2011 — натуральные и имеют одну и ту же сумму цифр B. Найдите наименьшее значение N.
Задачу решили:
86
всего попыток:
151
Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.
Задачу решили:
64
всего попыток:
182
Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар.
Задачу решили:
26
всего попыток:
31
Сколькими способами можно записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1?
Задачу решили:
69
всего попыток:
191
На листке написано несколько различных действительных чисел. Среди любых трёх из них обязательно найдутся два, сумма которых тоже написана на листке. Какое наибольшее количество чисел может быть на листке?
Задачу решили:
99
всего попыток:
172
Имеется число из 11 цифр, среди которых нет нулей. Все его цифры переписали в обратном порядке и получившееся число вычли из исходного. Найдите наименьшее положительное число, которое могло получиться в результате.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|