Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
90
всего попыток:
124
Все вершины выпуклого многогранника расположены в целочисленных точках. Ни внутри, ни на гранях, ни на рёбрах многогранника других целочисленных точек нет. Найти наибольшее число его вершин. (Целочисленная точка — это точка, все три координаты которой являются целыми числами.)
Задачу решили:
139
всего попыток:
164
На сторонах BC и CD квадрата ABCD выбраны точки E и F так, что периметр треугольника ECF равен половине периметра квадрата. Найдите величину угла EAF в градусах.
Задачу решили:
98
всего попыток:
201
Последовательность определяется условиями: x1=2009; x2=2010; xn+1=xn−1−1/xn при n>1. Найдите n, при котором xn=0.
Задачу решили:
181
всего попыток:
270
Перед Вами тортик в форме куба, который нужно разрезать на 27 одинаковых кубиков. Какое наименьшее число разрезов Вам понадобится сделать, если разрешается резать сразу несколько кусков, которые перед этим можно как угодно переложить и перевернуть? (Каждый разрез осуществляется вдоль одной плоскости.)
Задачу решили:
74
всего попыток:
243
По аллее длиной 100 метров гуляют старичок и старушка. Дойдя до конца аллеи каждый из них сразу же поворачивает обратно. Скорость старичка √2 км/ч, а старушки — 3 км/ч. В какой-то момент они оказались в противоположных концах аллеи. Сколько раз они встретятся в течение часа после этого? А сколько раз старушка обгонит старичка? В ответе укажите произведение двух полученных чисел. (Обгон встречей не является.)
Задачу решили:
85
всего попыток:
238
Найти такое наименьшее число n, что любой выпуклый 60-угольник является пересечением n треугольников.
Задачу решили:
79
всего попыток:
210
Положительные числа a и b таковы, что система из двух уравнений x2+y2+z2=a, |x|+|y|+|z|=b имеет ровно n решений. (Число n — натуральное.) Найдите сумму всех возможных значений n.
Задачу решили:
109
всего попыток:
136
Может ли число n4+4 быть простым, если n — целое и n>1?
Задачу решили:
107
всего попыток:
144
Какое наибольшее число сторон выпуклого многоугольника могут быть равны его самой длинной диагонали?
Задачу решили:
58
всего попыток:
79
На ледяном поле лежат три шайбы. Хоккеисту разрешается бросить любую из шайб так, чтобы она пролетела между двумя другими. Могут ли шайбы оказаться на своих первоначальных местах после 111 бросков хоккеиста? (После броска шайба летит по прямой. И до, и после броска шайбы лежат в вершинах треугольника.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|