img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 80
всего попыток: 150
Задача опубликована: 01.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).

Задачу решили: 81
всего попыток: 196
Задача опубликована: 05.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В турнире по волейболу, проводившемся в один круг, для каждой пары команд нашлась третья, которая проиграла им обеим. Найти наименьшее число команд, участвовавших в турнире.

Задачу решили: 44
всего попыток: 237
Задача опубликована: 07.11.09 10:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.

Задачу решили: 60
всего попыток: 167
Задача опубликована: 17.11.09 10:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Саша любит заниматься спортом. Каждый день он либо играет в футбол, либо плавает в бассейне. (На то и на другое ему одного дня не хватает.) Сколькими способами Саша может составить своё спортивное расписание на ноябрь, если он не хочет ходить в бассейн три дня подряд?

Задачу решили: 53
всего попыток: 412
Задача опубликована: 25.11.09 10:00
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Два человека, находящиеся на расстоянии 5 км друг от друга, в течение 20 секунд наблюдают за вертолётом, летящим по прямой с постоянной скоростью в гористой местности. Согласно наблюдениям одного из них, смещение вертолёта за это время составило 36°, а согласно наблюдениям другого — 30°. Сколько км/ч составляет наименьшая скорость вертолёта? (Ответ округлите до ближайшего целого числа.)   

Задачу решили: 83
всего попыток: 223
Задача опубликована: 29.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными шестизначными числами.

+ 7
  
Задачу решили: 12
всего попыток: 118
Задача опубликована: 29.11.09 15:50
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными 16-значными числами.

Задачу решили: 42
всего попыток: 47
Задача опубликована: 12.12.09 21:56
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?

Задачу решили: 99
всего попыток: 271
Задача опубликована: 19.12.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

Можно ли из нескольких остроугольных треугольников сложить тупоугольный? (Если можно — укажите минимальное число остроугольных треугольников, если нельзя — введите 0. Накладывать треугольники друг на друга и оставлять пустоты нельзя.)

Задачу решили: 49
всего попыток: 95
Задача опубликована: 10.01.10 15:43
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В выпуклом 2010-угольнике отметили некоторые точки (не являющиеся его вершинами) так, что в произвольном треугольнике, образованном любыми тремя вершинами 2010-угольника, нашлась отмеченная точка. Найдите наименьшее число отмеченных точек.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.