Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
80
всего попыток:
150
Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).
Задачу решили:
81
всего попыток:
196
В турнире по волейболу, проводившемся в один круг, для каждой пары команд нашлась третья, которая проиграла им обеим. Найти наименьшее число команд, участвовавших в турнире.
Задачу решили:
44
всего попыток:
237
Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.
Задачу решили:
60
всего попыток:
167
Саша любит заниматься спортом. Каждый день он либо играет в футбол, либо плавает в бассейне. (На то и на другое ему одного дня не хватает.) Сколькими способами Саша может составить своё спортивное расписание на ноябрь, если он не хочет ходить в бассейн три дня подряд?
Задачу решили:
53
всего попыток:
412
Два человека, находящиеся на расстоянии 5 км друг от друга, в течение 20 секунд наблюдают за вертолётом, летящим по прямой с постоянной скоростью в гористой местности. Согласно наблюдениям одного из них, смещение вертолёта за это время составило 36°, а согласно наблюдениям другого — 30°. Сколько км/ч составляет наименьшая скорость вертолёта? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
83
всего попыток:
223
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными шестизначными числами.
Задачу решили:
12
всего попыток:
118
Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными 16-значными числами.
Задачу решили:
42
всего попыток:
47
В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?
Задачу решили:
99
всего попыток:
271
Можно ли из нескольких остроугольных треугольников сложить тупоугольный? (Если можно — укажите минимальное число остроугольных треугольников, если нельзя — введите 0. Накладывать треугольники друг на друга и оставлять пустоты нельзя.)
Задачу решили:
49
всего попыток:
95
В выпуклом 2010-угольнике отметили некоторые точки (не являющиеся его вершинами) так, что в произвольном треугольнике, образованном любыми тремя вершинами 2010-угольника, нашлась отмеченная точка. Найдите наименьшее число отмеченных точек.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|