img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 19
+ЗАДАЧА 61. Номера у рёбер куба (Н.Б.Васильев, Н.Н.Константинов)
  
Задачу решили: 123
всего попыток: 463
Задача опубликована: 21.04.09 10:45
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 198
всего попыток: 375
Задача опубликована: 22.04.09 20:25
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: casper

Сколько квадратных сантиметров составляет максимально возможная площадь ортогональной проекции на горизонтальную плоскость правильного тетраэдра со стороной 10 см?

Задачу решили: 270
всего попыток: 432
Задача опубликована: 24.04.09 18:54
Прислал: demiurgos img
Источник: По мотивам французской задачи XVII века
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: uchilka725 (Оксана Урусова)

С целью ухода от налогов первый из 5 друзей торговцев одолжил остальным столько денег, сколько было у каждого. Затем также поступил второй, потом третий, потом четвёртый, и наконец пятый. После всех пяти процедур капитал каждого не изменился. Каков капитал первого торговца, если капитал последнего составляет 100 экю?

(Предлагалась на "Первом математическом")
Задачу решили: 161
всего попыток: 647
Задача опубликована: 27.04.09 22:47
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

Какое минимальное количество шаров (любых размеров) нужно разместить вне заданной точки пространства так, чтобы каждый луч с началом в этой точке пересекал хотя бы один из шаров, а сами шары не пересекались?

Задачу решили: 74
всего попыток: 628
Задача опубликована: 05.05.09 21:21
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Имеется 729 карточек со всеми трёхзначными номерами от 111 до 999, состоящими из цифр от 1 до 9, и 81 ящик со всеми двузначными номерами от 11 до 99, опять-таки не содержащими нулей. Каждую карточку можно положить в ящик с номером, который получается вычёркиванием одной из цифр номера карточки. Например, карточку 123 можно положить в ящики 12, 13 и 23. Какое наибольшее число ящиков могут оказаться пустыми после того, как все карточки разложены по ящикам указанным образом?

Задачу решили: 215
всего попыток: 586
Задача опубликована: 06.05.09 14:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

В колонию из 2009 бактерий попадает вирус. Через секунду он уничтожает одну бактерию. Ещё через секунду все бактерии и все вирусы делятся надвое. Далее каждый вирус через секунду после своего рождения уничтожает одну бактерию, а ещё через секунду после этого все бактерии и все вирусы делятся надвое. Через сколько секунд после попадания вируса все бактерии будут уничтожены?

Задачу решили: 203
всего попыток: 593
Задача опубликована: 22.05.09 20:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Mnohogrannik

Сколько различных целочисленных решений имеет неравенство |x|+|y|≤2009 ?

Задачу решили: 151
всего попыток: 238
Задача опубликована: 06.06.09 14:29
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

На какое наименьшее (но большее 1) число кубов, среди которых нет двух равных, можно разбить прямоугольный параллелепипед? Если Вы считаете, что такое разбиение невозможно, то введите 0.

(Аналогичный вопрос для плоскости ставится в задаче "Прямоугольник из разных квадратов".)
Задачу решили: 123
всего попыток: 390
Задача опубликована: 29.05.09 17:49
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В стране 21 аэропорт. Авиационное сообщение между ними осуществляют несколько авиакомпаний, каждой из которых разрешается совершать любые рейсы между 5 аэропортами. При каком наименьшем числе авиакомпаний можно перелететь из любого аэропорта в любой другой без пересадки?

Задачу решили: 131
всего попыток: 329
Задача опубликована: 22.06.09 21:38
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: fedyakov

Сколько кубических сантиметров составляет объём пересечения двух (достаточно длинных) цилиндров, оси которых пересекаются под прямым углом, а диаметры равны 3 см?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.