img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 173
всего попыток: 583
Задача опубликована: 21.03.09 23:36
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Сколько имеется 20-значных чисел с нечётным количеством нулей?

Задачу решили: 171
всего попыток: 401
Задача опубликована: 25.03.09 19:55
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: NushN (Анна Григорук)

Рассмотрим два различных тетраэдра, вписанные в куб так, что вершины каждого являются вершинами куба, а ребра — диагоналями граней.  Во сколько раз объем куба больше, чем пересечение этих тетраэдров?

Задачу решили: 198
всего попыток: 375
Задача опубликована: 22.04.09 20:25
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: casper

Сколько квадратных сантиметров составляет максимально возможная площадь ортогональной проекции на горизонтальную плоскость правильного тетраэдра со стороной 10 см?

Задачу решили: 140
всего попыток: 316
Задача опубликована: 30.05.09 22:50
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: fedyakov

Иголку длиной 10 см случайно бросают на разлинованную бумагу, расстояние между соседними линиями которой тоже 10 см. Сколько процентов составляет вероятность того, что упавшая иголка пересечёт линию бумаги? Ответ округлите до ближайшего целого числа.

Задачу решили: 131
всего попыток: 329
Задача опубликована: 22.06.09 21:38
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: fedyakov

Сколько кубических сантиметров составляет объём пересечения двух (достаточно длинных) цилиндров, оси которых пересекаются под прямым углом, а диаметры равны 3 см?

Задачу решили: 54
всего попыток: 795
Задача опубликована: 27.12.09 17:26
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: bbny

Играют двое. У первого есть монеты достоинством в 2 рубля и 5 рублей. Одну из них (по своему выбору) он зажимает в кулаке, а второй игрок пытается угадать, что это за монета. Если тот угадывает, то получает монету, а если нет, то платит первому игроку m копеек. Найдите наибольшее целое m, при котором игра выгодна второму игроку.

Задачу решили: 56
всего попыток: 159
Задача опубликована: 19.03.10 08:00
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Функция ƒ, определённая на всех векторах трёхмерного пространства, такова, что для любых действительных чисел a, b и любых векторов x, y выполняется неравенство

ƒ(ax+by) ≤ max {ƒ(x), ƒ(y)}.

Какое наибольшее число различных значений может принимать функция ƒ?

Задачу решили: 49
всего попыток: 301
Задача опубликована: 04.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Вычислите


и округлите результат до ближайшего целого числа.

Задачу решили: 46
всего попыток: 100
Задача опубликована: 19.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: perfect_result... (Александр Опарин)

Сколько различных чисел встречается среди остатков от деления на n чисел 13, 23, 33, ..., (n−1)3, n3, где n=9699690·2011?

Задачу решили: 34
всего попыток: 38
Задача опубликована: 21.10.11 08:00
Прислал: demiurgos img
Источник: классика
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Timur

Пусть p(n) — вероятность того, что ни одно из n писем, случайным образом запечатанных в приготовленные для них n конвертов, не дойдёт до своего адресата. Найти предел p(n)при n→∞.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.