img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 61
всего попыток: 254
Задача опубликована: 08.02.10 21:49
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Конечная арифметическая прогрессия с ненулевой разностью состоит из целых положительных чисел, десятичная запись каждого из которых не содержит ни одной девятки. Найдите наибольшее число членов в такой прогрессии.

Задачу решили: 141
всего попыток: 237
Задача опубликована: 11.02.10 20:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Random (Руслан Головин)

На девяти жетонах написаны различные цифры от 1 до 9 (по одной цифре на каждом жетоне). Двое игроков берут по очереди по одному жетону. Выигрывает тот, у кого первого среди взятых им жетонов окажутся три, сумма цифр на которых равна 15. Кто выиграет, если соперник не будет поддаваться? (Если выиграет первый игрок — введите 1, если второй — введите 2, если будет ничья — введите 0.)

Задачу решили: 77
всего попыток: 155
Задача опубликована: 02.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Футбольный мяч сшит из пятиугольников и шестиугольников, длины всех сторон которых одинаковы. Все многоугольники сшиваются сторона к стороне так, что к каждой вершине примыкают два шестиугольника и один пятиугольник. Среди пятиугольников есть белые и чёрные. Известно, что каждый шестиугольник примыкает хотя бы к одному чёрному пятиугольнику. Найдите наименьшее число чёрных пятиугольников.

Задачу решили: 56
всего попыток: 159
Задача опубликована: 19.03.10 08:00
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Функция ƒ, определённая на всех векторах трёхмерного пространства, такова, что для любых действительных чисел a, b и любых векторов x, y выполняется неравенство

ƒ(ax+by) ≤ max {ƒ(x), ƒ(y)}.

Какое наибольшее число различных значений может принимать функция ƒ?

Задачу решили: 51
всего попыток: 346
Задача опубликована: 07.04.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В квадратной таблице 10×10 написаны все целые числа от 1 до 100 — по одному числу в каждой ячейке — так, что числа, отличающиеся друг от друга на ±1, стоят в соседних (по горизонтали или по вертикали) ячейках. Найдите наименьшую сумму 10 чисел, стоящих на диагонали таблицы.

Задачу решили: 71
всего попыток: 209
Задача опубликована: 17.05.10 08:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В команде 12 мотоциклистов. Тренер дал им задание ездить по кольцевой трассе в одном и том же направлении с разными постоянными скоростями, но обгонять друг друга разрешил только в одном месте трассы, отметив его флажком. Какое наибольшее число членов команды смогут (неограниченно долго) выполнять такое странное задание тренера?

Задачу решили: 152
всего попыток: 383
Задача опубликована: 26.05.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Решите уравнение . В ответе укажите количество его целых решений.

Задачу решили: 65
всего попыток: 147
Задача опубликована: 25.06.10 08:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: min

Какое наибольшее число костей домино можно выложить в цепь так, чтобы кости прилегали друг к другу числами, отличающимися на 1 (а не равными, как обычно); например: 00-15-43-46-55. (Домино состоит из 28 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 6: 00, 01, 02, 03, 04, 05, 06, 11, 12,...)

Задачу решили: 86
всего попыток: 143
Задача опубликована: 03.09.10 08:00
Прислал: demiurgos img
Источник: Васильев, Гутенмахер, Раббот, Тоом "Заочные м...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Два самолёта летят прямолинейными курсами с постоянными скоростями. В 12-00 расстояние между ними составляло 200 км, в 12-07 — 150 км, а в 12-21 — 130 км. Сколько км составляло наименьшее расстояние между самолётами?

Задачу решили: 72
всего попыток: 256
Задача опубликована: 06.01.11 08:00
Прислал: demiurgos img
Источник: по мотивам Всероссийской олимпиады
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько различных действительных решений имеет уравнение f(f(x))=x, где f(x)=|4021·|x|−2011|−2010?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.