img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: putout добавил решение задачи "Три точки на прямой" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 126
  
Задачу решили: 563
всего попыток: 2177
Задача опубликована: 04.03.09 17:44
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

12 биллиардных шаров, между которыми одинаковые промежутки, движутся по одной прямой с одной и той же скоростью в одном и том же направлении, а навстречу им по той же прямой с той же скоростью движутся 15 таких же шаров с такими же промежутками между ними.

Сколько столкновений произойдет в этой системе? (Столкновения считать абсолютно упругими - потерь механической энергии нет.)

Задачу решили: 820
всего попыток: 2328
Задача опубликована: 04.03.09 15:19
Прислал: demiurgos img
Источник:
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: mes

Какое минимальное количество гирек требуется, чтобы на чашечных весах взвешивать с точностью до грамма разные предметы массой от 1 до 40 граммов? (Гирьки можно класть на любые чашки весов.)

Задачу решили: 173
всего попыток: 583
Задача опубликована: 21.03.09 23:36
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Сколько имеется 20-значных чисел с нечётным количеством нулей?

+ 19
+ЗАДАЧА 61. Номера у рёбер куба (Н.Б.Васильев, Н.Н.Константинов)
  
Задачу решили: 123
всего попыток: 463
Задача опубликована: 21.04.09 10:45
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 74
всего попыток: 628
Задача опубликована: 05.05.09 21:21
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Имеется 729 карточек со всеми трёхзначными номерами от 111 до 999, состоящими из цифр от 1 до 9, и 81 ящик со всеми двузначными номерами от 11 до 99, опять-таки не содержащими нулей. Каждую карточку можно положить в ящик с номером, который получается вычёркиванием одной из цифр номера карточки. Например, карточку 123 можно положить в ящики 12, 13 и 23. Какое наибольшее число ящиков могут оказаться пустыми после того, как все карточки разложены по ящикам указанным образом?

Задачу решили: 123
всего попыток: 390
Задача опубликована: 29.05.09 17:49
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В стране 21 аэропорт. Авиационное сообщение между ними осуществляют несколько авиакомпаний, каждой из которых разрешается совершать любые рейсы между 5 аэропортами. При каком наименьшем числе авиакомпаний можно перелететь из любого аэропорта в любой другой без пересадки?

Задачу решили: 89
всего попыток: 280
Задача опубликована: 31.07.09 13:58
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sweetale

На 101 шаре написаны различные натуральные числа от 2 до 102, а на 101 ящике — различные натуральные числа от 1 до 101. Сколькими способами можно разложить шары по ящикам (в каждый ящик по одному шару) так, чтобы номер шара делился на номер ящика?

Задачу решили: 51
всего попыток: 131
Задача опубликована: 19.09.09 00:06
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В парке оборудовано n остановок для детских паровозиков. У каждого паровозика свой маршрут, состоящий из нескольких (необязательно всех) остановок. От каждой остановки до любой другой можно доехать без пересадки, но только на одном паровозике. С каждого паровозика можно пересесть на любой другой, доехав до нужной остановки. Имеется паровозик, чей маршрут состоит ровно из трёх остановок. Найдите максимально возможное значение n.

Задачу решили: 45
всего попыток: 75
Задача опубликована: 19.10.09 22:14
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На какое максимальное число частей могут делить пространство n плоскостей? (Речь идёт о трёхмерном пространстве и двумерных плоскостях.)

Задачу решили: 81
всего попыток: 196
Задача опубликована: 05.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В турнире по волейболу, проводившемся в один круг, для каждой пары команд нашлась третья, которая проиграла им обеим. Найти наименьшее число команд, участвовавших в турнире.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.