img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 70
всего попыток: 104
Задача опубликована: 26.09.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Найдите наибольшее значение n≤2011, при котором в клетках доски n×n можно расставить фишки так, чтобы на любых двух горизонталях стояли одинаковые количества фишек, а на любых двух вертикалях — различные. (В одну клетку можно поставить не более одной фишки, а каждая фишка должна занимать ровно одну клетку.)

Задачу решили: 86
всего попыток: 111
Задача опубликована: 19.10.11 08:00
Прислал: demiurgos img
Источник: А.В.Спивак, Математический кружок
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

В клетках шахматной доски 8×8 расставлены n фишек так, что любой квадрат 3×3 содержит в точности одну фишку. Найдите произведение наибольшего и наименьшего значений n.

Задачу решили: 112
всего попыток: 309
Задача опубликована: 24.10.11 08:00
Прислал: demiurgos img
Источник: А.В.Спивак "Математический кружок"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Какое наибольшее число сторон может быть у многоугольника, являющегося пересечением треугольника и четырёхугольника?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.