img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 19
+ЗАДАЧА 61. Номера у рёбер куба (Н.Б.Васильев, Н.Н.Константинов)
  
Задачу решили: 123
всего попыток: 463
Задача опубликована: 21.04.09 10:45
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 129
всего попыток: 1028
Задача опубликована: 22.04.09 20:25
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

В центре квадрата пасётся антилопа, а в его вершинах притаились четыре гепарда, которые могут бегать со скоростью не более 99 км/ч, но только по сторонам квадрата. С какой скоростью должна бежать антилопа, чтобы вырваться за пределы квадрата при любой тактике гепардов?

(В ответе укажите минимально возможное целое значение её допустимой скорости в км/ч, единицы измерения не вводите. Антилопа и гепарды — это точки на плоскости.)

+ 37
+ЗАДАЧА 66. Хитрая улитка II (Н.Н.Константинов)
  
Задачу решили: 164
всего попыток: 717
Задача опубликована: 23.04.09 09:56
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

Улитка ползёт вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое минимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

Задачу решили: 240
всего попыток: 333
Задача опубликована: 24.04.09 18:36
Прислал: demiurgos img
Источник: "Наука и жизнь"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Найдите минимальное натуральное число, которое увеличивается в два раза после перестановки его последней цифры в начало числа. (Все остальные цифры сдвигаются при этом вправо.)

(Предлагалась на "Первом математическом")
Задачу решили: 161
всего попыток: 647
Задача опубликована: 27.04.09 22:47
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

Какое минимальное количество шаров (любых размеров) нужно разместить вне заданной точки пространства так, чтобы каждый луч с началом в этой точке пересекал хотя бы один из шаров, а сами шары не пересекались?

Задачу решили: 255
всего попыток: 569
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

В романе 50 глав: 25 с нечётным количеством страниц и 25 — с чётным. Первая глава начинается с нечётной страницы, а каждая из остальных — с новой страницы, сразу следующей за предыдущей главой. Какое максимальное число глав может начинаться с чётной страницы?

Задачу решили: 132
всего попыток: 602
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Даны 4 точки на плоскости, не лежащие на одной окружности. Каково максимально возможное число окружностей, равноудалённых от всех точек?

Задачу решили: 231
всего попыток: 718
Задача опубликована: 06.05.09 15:33
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sertyh (Николай Мельниченко)

На какое минимальное число тетраэдров можно разрезать куб? (Тетраэдр — это треугольная пирамида.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.