Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
63
всего попыток:
143
Найдите наибольшее целое число, десятичная запись которого обладает следующими свойствами: 1) она не заканчивается 0; 2) в результате вычёркивания одной из её цифр — но не первой — получается делитель исходного числа (точнее, его десятичная запись).
Задачу решили:
135
всего попыток:
195
В сплошном шаре сверлится вертикальное цилиндрическое отверстие, ось которого проходит через центр шара. Высота полученного тела равна 6 см. Сколько см3 составляет его объём? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
50
всего попыток:
188
У выпуклого многогранника 2010 рёбер. Какое наибольшее число из них могут пересекать плоскость, не проходящую через вершины многогранника?
Задачу решили:
26
всего попыток:
42
Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?
Задачу решили:
61
всего попыток:
254
Конечная арифметическая прогрессия с ненулевой разностью состоит из целых положительных чисел, десятичная запись каждого из которых не содержит ни одной девятки. Найдите наибольшее число членов в такой прогрессии.
Задачу решили:
141
всего попыток:
237
На девяти жетонах написаны различные цифры от 1 до 9 (по одной цифре на каждом жетоне). Двое игроков берут по очереди по одному жетону. Выигрывает тот, у кого первого среди взятых им жетонов окажутся три, сумма цифр на которых равна 15. Кто выиграет, если соперник не будет поддаваться? (Если выиграет первый игрок — введите 1, если второй — введите 2, если будет ничья — введите 0.)
Задачу решили:
80
всего попыток:
576
Какое наименьшее число матчей нужно провести, чтобы из 24 теннисистов гарантированно определить двух сильнейших, т.е. честно разыграть между всеми участниками I и II места? (Любые два участника играют в разную силу; в каждом матче побеждает сильнейший; если А сильнее Б, а Б сильнее В, то А сильнее В.)
Задачу решили:
164
всего попыток:
421
На какое наименьшее число равных пирамид можно разрезать куб?
Задачу решили:
143
всего попыток:
264
У Вас есть 8 одинаковых по размеру и внешнему виду шариков, среди которых 4 алюминиевых и 4 дюралевых. Различить их можно только по весу. За какое минимальное число взвешиваний на чашечных весах без гирь Вам удастся найти среди них два шарика, сделанных из разных металлов? (Массы всех шариков из одного и того же металла совпадают.)
Задачу решили:
127
всего попыток:
209
В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|