img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 177
всего попыток: 627
Задача опубликована: 24.04.09 18:54
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Есть картонный невыпуклый стоугольник. Если разрезать его один раз по прямой линии, то он распадётся на несколько новых многоугольников. Какое максимальное число треугольников может среди них получиться?

(Предлагалась на "Первом математическом")
Задачу решили: 132
всего попыток: 602
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Даны 4 точки на плоскости, не лежащие на одной окружности. Каково максимально возможное число окружностей, равноудалённых от всех точек?

Задачу решили: 220
всего попыток: 486
Задача опубликована: 09.05.09 08:50
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Какое наибольшее число фотографов могут одновременно сфотографировать друг друга, используя широкоугольные объективы, позволящие делать кадры углового размера 173°? (Фотографы — это различные точки плоскости.)

Задачу решили: 180
всего попыток: 652
Задача опубликована: 10.05.09 12:19
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

В круглый пирог диаметра 35 см запечён металлический рубль диаметра 2 см. На какое минимальное число кусков нужно разрезать пирог, чтобы гарантированно найти монету, если известно, что она расположена в пироге горизонтально? (Разрешается делать только прямолинейные разрезы. Монета считается обнаруженной, если она попадает под нож.) 

Задачу решили: 260
всего попыток: 855
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Hasmik33

На какое минимальное число остроугольных треугольников можно разрезать квадрат?

Задачу решили: 157
всего попыток: 570
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: по мотивам задачи Всесоюзной математической о...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?

Задачу решили: 108
всего попыток: 494
Задача опубликована: 16.05.09 10:19
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: lg

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Лиса может бегать по всей арене, а заяц лишь по её краю. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса — это точка на круге, а заяц — на его окружности; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

 

Задачу решили: 113
всего попыток: 188
Задача опубликована: 21.05.09 21:06
Прислал: demiurgos img
Источник: Дж. Литлвуд "Математическая смесь"
Вес: 1
сложность: 5 img
баллы: 100

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

Задачу решили: 161
всего попыток: 594
Задача опубликована: 28.05.09 23:08
Прислал: demiurgos img
Источник: Г.Штейнгауз "Математический калейдоскоп"
Вес: 1
сложность: 4 img
класс: 6-7 img
баллы: 100

Из какого наименьшего числа квадратов, среди которых нет двух равных, можно сложить прямоугольник? (Квадратов должно быть больше одного.)

Если Вы считаете, что нельзя, то введите 0.

Задачу решили: 149
всего попыток: 200
Задача опубликована: 25.05.09 23:32
Прислал: demiurgos img
Источник: П.В.Маковецкий "Смотри в корень!"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.)

Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.