Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
139
всего попыток:
891
Среди нескольких компьютерных чипов есть два поддельных, которые обладают повышенной радиоактивностью, а в остальном не отличаются от настоящих. В имеющийся прибор можно засунуть любое количество чипов и узнать, есть ли среди них радиоактивный (но нельзя понять, сколько именно — один или два). Каково максимальное число чипов, среди которых можно гарантировать обнаружение обоих поддельных за 7 проверок?
Задачу решили:
96
всего попыток:
315
В соревнованиях по десятиборью участвуют 1024 человека. Для каждого спортсмена известна его сила в каждом из видов программы, причём силы разных спортсменов различны. Соревнования проходят следующим образом: сначала все спортсмены участвуют в первом виде программы и лучшая половина из них выходит в следующий круг. Эта половина принимает участие в следующем виде и половина из них выходит в следующий круг, и т.д., пока в 10-м виде программы не будет определен победитель. Назовем спортсмена "заведомым аутсайдером", если при любом порядке видов спорта в программе он не может стать победителем. Каково минимально возможное число заведомых аутсайдеров?
Задачу решили:
291
всего попыток:
684
В тюрьму поместили 20 узников. Надзиратель сказал им: «Я дам вам вечер поговорить друг с другом, а утром построю всех в колонну, надену каждому на голову красный, жёлтый или зелёный колпак, а потом спрошу каждого в указанном вами порядке, каков цвет надетого на него колпака. Сколько будет правильных ответов, стольких из вас я отпущу на свободу. Остальных скормлю крокодилам. Кого конкретно — решит жребий. Каждый узник будет слышать все ответы, но сможет увидеть колпаки всех тех и только тех, кто стоит впереди в колонне. Отвечать нужно обязательно, причём только "красный", "жёлтый" или "зелёный", и сразу — пауза перед вопросом будет достаточной для размышлений. Таковы условия, если замечу жульничество — скормлю крокодилам всех!» Какому максимальному числу счастливчиков узники смогут гарантировать освобождение?
Задачу решили:
62
всего попыток:
484
В тюрьму поместили 6 узников. Надзиратель сказал им: «Я дам вам сегодня поговорить друг с другом, а потом рассажу по отдельным камерам, и общаться вы больше не сможете. Завтра я вас по очереди отведу в комнату, где стоят 6 закрытых ящиков, в которые я положу разные номера от 1 до 6 (в каждый ящик по номеру), и разрешу открыть 3 любые ящика в произвольном порядке. Каждый из вас должен открыть ящик с номером своей очереди, а какой именно номер лежит в ящике вы увидите, как только его откроете. Если каждому из вас удастся открыть ящик с нужным номером, то я всех выпущу на свободу. А если хоть кто-то потерпит неудачу — скормлю всех крокодилам. Не волнуйтесь, я великодушен — перед приходом следующего узника я буду просто закрывать все ящики и не буду ни переставлять их, ни перекладывать номера. Я даже могу всех вас сегодня отвести в эту комнату и разрешить пометить ящики! А номера в них я положу потом.» Какова максимальная вероятность освобождения узников при их правильной стратегии?
Задачу решили:
639
всего попыток:
1683
На приёме каждый из 11 послов различных государств хочет поздороваться за руку с наибольшим числом коллег, но по правилам этикета все послы должны сделать по одинаковому числу рукопожатий. Сколько рукопожатий сможет сделать каждый посол, если послы государств Лилипутия и Блефуску не здороваются друг с другом?
Задачу решили:
138
всего попыток:
1031
Вам нужно узнать задуманное число от 1 до 2000. Можно задавать вопросы, на которые тот, кто задумал число, отвечает либо «да», либо «нет». Какое минимальное число вопросов нужно задать, чтобы достоверно определить задуманное число, если отвечающий может и солгать, но не более одного раза?
Задачу решили:
123
всего попыток:
463
Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)
Задачу решили:
110
всего попыток:
781
Витязи накануне хорошо отдохнули и перед выходом из моря построились не по росту. Перестраиваться они не соглашаются, но их морской дядька может приказать некоторым из них выйти из строя так, чтобы оставшиеся стояли по росту либо в порядке убывания, либо в порядке возрастания. Какое максимальное число витязей он сможет вывести из моря при их наихудшей для него (и наилучшей для них) первоначальной расстановке? Витязи все разного роста, а всего их, как известно, 30.
Задачу решили:
74
всего попыток:
628
Имеется 729 карточек со всеми трёхзначными номерами от 111 до 999, состоящими из цифр от 1 до 9, и 81 ящик со всеми двузначными номерами от 11 до 99, опять-таки не содержащими нулей. Каждую карточку можно положить в ящик с номером, который получается вычёркиванием одной из цифр номера карточки. Например, карточку 123 можно положить в ящики 12, 13 и 23. Какое наибольшее число ящиков могут оказаться пустыми после того, как все карточки разложены по ящикам указанным образом?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|