img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish решил задачу "Дырявый квадрат - 5" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 74
всего попыток: 343
Задача опубликована: 15.02.10 10:59
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

Деревянный куб с ребром 10 см требуется оклеить в один слой цветной бумагой, вырезав при этом только одну заготовку из бумажного квадрата со стороной n см. Найти наименьшее n, при котором это возможно.

Задачу решили: 164
всего попыток: 421
Задача опубликована: 18.02.10 08:00
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На какое наименьшее число равных пирамид можно разрезать куб?

Задачу решили: 109
всего попыток: 280
Задача опубликована: 20.02.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

На плоскости отмечена 21 точка так, как показано на рисунке. Какое наименьшее число прямых нужно провести, чтобы разделить все отмеченные точки? (Т.е. для любой пары отмеченных точек должна найтись проведённая прямая, не содержащая ни одну из них и проходящая между ними.)

Задачу решили: 143
всего попыток: 264
Задача опубликована: 22.02.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

У Вас есть 8 одинаковых по размеру и внешнему виду шариков, среди которых 4 алюминиевых и 4 дюралевых. Различить их можно только по весу. За какое минимальное число взвешиваний на чашечных весах без гирь Вам удастся найти среди них два шарика, сделанных из разных металлов? (Массы всех шариков из одного и того же металла совпадают.)

Задачу решили: 77
всего попыток: 149
Задача опубликована: 25.02.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В круге радиуса 10 см на расстоянии 5 см от его центра отмечается точка. Через неё проводятся две перпендикулярные прямые, одна из которых проходит через центр круга. Затем обе прямые поворачиваются на 30° относительно отмеченной точки против часовой стрелки. При этом хорды, лежащие на прямых, заметают часть круга, показанную на рисунке. Сколько см2 составляет её площадь? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 127
всего попыток: 209
Задача опубликована: 26.02.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Father

В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)

Задачу решили: 88
всего попыток: 115
Задача опубликована: 28.02.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: шахматыimg
Лучшее решение: awpris

Эта шахматная позиция возникла из начальной после четвёртого хода чёрных. Как именно? В ответе необходимо указать все ходы белых и чёрных фигур.

Задачу решили: 77
всего попыток: 155
Задача опубликована: 02.03.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Футбольный мяч сшит из пятиугольников и шестиугольников, длины всех сторон которых одинаковы. Все многоугольники сшиваются сторона к стороне так, что к каждой вершине примыкают два шестиугольника и один пятиугольник. Среди пятиугольников есть белые и чёрные. Известно, что каждый шестиугольник примыкает хотя бы к одному чёрному пятиугольнику. Найдите наименьшее число чёрных пятиугольников.

Задачу решили: 23
всего попыток: 28
Задача опубликована: 08.03.10 08:00
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fcsm77

В квадрате со стороной 29 см расположена фигура, расстояние между любыми двумя точками которой не равно 1 см. Доказать, что площадь этой фигуры меньше 300 см2. (Можно считать, что граница фигуры состоит из отрезков прямых и дуг окружностей.)

Задачу решили: 56
всего попыток: 263
Задача опубликована: 10.03.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Периметр выпуклого четырёхугольника равен 2010, длина одной из его диагоналей равна 1000, а длина второй — целому числу m. Найдите наименьшее и наибольшее значения m. В ответе укажите произведение двух найденных чисел.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.