img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 80
всего попыток: 576
Задача опубликована: 13.02.10 17:39
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Какое наименьшее число матчей нужно провести, чтобы из 24 теннисистов гарантированно определить двух сильнейших, т.е. честно разыграть между всеми участниками I и II места? (Любые два участника играют в разную силу; в каждом матче побеждает сильнейший; если А сильнее Б, а Б сильнее В, то А сильнее В.)

Задачу решили: 143
всего попыток: 264
Задача опубликована: 22.02.10 08:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

У Вас есть 8 одинаковых по размеру и внешнему виду шариков, среди которых 4 алюминиевых и 4 дюралевых. Различить их можно только по весу. За какое минимальное число взвешиваний на чашечных весах без гирь Вам удастся найти среди них два шарика, сделанных из разных металлов? (Массы всех шариков из одного и того же металла совпадают.)

Задачу решили: 70
всего попыток: 278
Задача опубликована: 28.04.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Команда из 25 школьников участвует следующем конкурсе. Каждому из них надевают кепку одного из трёх заранее известных цветов так, что каждый видит кепки своих друзей, но не видит своей. После этого каждый школьник пишет на карточке свою фамилию и предполагаемый цвет своей кепки (подглядывать, что пишут другие, нельзя). Команда получает столько очков, сколько было сдано карточек с правильными ответами. Какое наибольшее число очков может гарантированно обеспечить себе команда, если школьники заранее договорятся о своих действиях?

Задачу решили: 57
всего попыток: 246
Задача опубликована: 09.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

У Вас есть 200 одинаковых на вид, вес и ощупь шариков, ровно один из которых радиоактивен. Ещё имеется автомат, в который можно засунуть сколько угодно шариков, бросить 30 рублей и нажать кнопку. Если радиактивности нет, то загорается зелёная лампочка и автомат выдаёт 10 рублей сдачи. Если же обнаруживается радиоактивность, то загорается красная лампочка и никакой сдачи не выдаётся. Какой наименьшей суммой в рублях Вы должны располагать, чтобы гарантированно (т.е. при полном отсутствии везения) найти радиоактивный шарик?

Задачу решили: 64
всего попыток: 156
Задача опубликована: 28.09.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Timur

Перед двумя игроками кучка из 1000 спичек. В начале игры первый игрок берёт из неё любое количество спичек от 1 до 999, а затем каждый из игроков по очереди берёт любое число оставшихся спичек, но не больше, чем перед этим взял другой игрок. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Какое наименьшее количество спичек должен взять в начале игры первый игрок, чтобы обеспечить себе победу при любых ходах второго игрока?

Задачу решили: 84
всего попыток: 567
Задача опубликована: 30.09.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

Перед Вами 50 одинаковых на вид кубиков — 25 берёзовых и 25 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?

Задачу решили: 34
всего попыток: 173
Задача опубликована: 03.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Timur

Перед Вами 56 одинаковых на вид кубиков — 28 берёзовых и 28 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.