img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 155
всего попыток: 364
Задача опубликована: 21.10.09 22:00
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Найти максимальное семизначное число, которое состоит из трёх натуральных чисел, образующих арифметическую прогрессию и написанных друг за другом без пробелов в том же порядке, как и в прогрессии. (Пример такого числа: 8090100. Естественно, имеются в виду не числа, а их десятичные записи.)

Задачу решили: 161
всего попыток: 280
Задача опубликована: 28.10.09 19:31
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три? 

Задачу решили: 80
всего попыток: 150
Задача опубликована: 01.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: min

Пусть b(1)<b(2)<b(3)<... — такая строго возрастающая последовательность целых положительных чисел, что b(b(n))=3n для любого n. Найдите b(2009).

Задачу решили: 44
всего попыток: 237
Задача опубликована: 07.11.09 10:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Найти минимальное n, при котором справедливо следующее утверждение: среди любых n различных целых положительных чисел, записанных в порядке возрастания, обязательно найдутся 6 чисел, каждое из которых (кроме первого) либо делится на все предыдущие, либо не делится ни на одно из предыдущих.

Задачу решили: 340
всего попыток: 483
Задача опубликована: 13.11.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Из ряда натуральных чисел от 1 до 2009 вычеркнули все нечётные числа. Из оставшихся вычеркнули числа, стоявшие на нечётных местах. Эту процедуру повторяли до тех пор, пока не осталось только одно число. Найдите его.

Задачу решили: 83
всего попыток: 223
Задача опубликована: 29.11.09 10:00
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными шестизначными числами.

+ 7
  
Задачу решили: 12
всего попыток: 118
Задача опубликована: 29.11.09 15:50
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Назовём число интересным, если сумма его цифр, стоящих на нечётных местах, равна сумме цифр на чётных местах. Найти максимальную разность (по модулю) между двумя соседними интересными 16-значными числами.

Задачу решили: 42
всего попыток: 47
Задача опубликована: 12.12.09 21:56
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?

Задачу решили: 38
всего попыток: 145
Задача опубликована: 20.12.09 10:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Два различных числа называются похожими, если их десятичные записи совпадают во всех разрядах, кроме одного. Найдите максимальное количество семизначных чисел, среди которых нет двух похожих. 

Задачу решили: 72
всего попыток: 156
Задача опубликована: 28.12.09 22:51
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Дурацкое домино похоже на обычное, но состоит из 36 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 7: 0-0, 0-1, 0-2,...,0-7, 1-1, 1-2,... Найдите наименьшее число цепочек, в которые можно выложить все кости дурацкого домино по обычному правилу — кости в цепочке прилегают друг к другу одинаковыми числами, например: 0-1, 1-1, 1-3, 3-7, 7-4. (Обычное домино состоит из 28 костей, на которых написаны все различные пары целых чисел от 0 до 6, все его кости можно выложить в одну цепочку.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.