Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
260
всего попыток:
855
На какое минимальное число остроугольных треугольников можно разрезать квадрат?
Задачу решили:
149
всего попыток:
242
Найти максимальное значение выражения |...|x1−x2|−x3|−x4|...−x998|−x999|, где x1, x2, x3, x4, ..., x998, x999 — различные натуральные числа от 1 до 999.
Задачу решили:
157
всего попыток:
570
Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?
Задачу решили:
84
всего попыток:
547
Сначала напишем на доске две единицы: 1 1. На втором шаге напишем между ними их сумму и получим: 1 2 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Получим: 1 3 2 3 1, 1 4 3 5 2 5 3 4 1, 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1,... Сколько раз мы напишем число 2009, если будем продолжать эту процедуру до бесконечности?
Задачу решили:
108
всего попыток:
494
В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Лиса может бегать по всей арене, а заяц лишь по её краю. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.) Пояснения: лиса — это точка на круге, а заяц — на его окружности; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.
Задачу решили:
113
всего попыток:
188
В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Но на этот раз и лиса, и заяц могут бегать по всей арене (ср. с задачей 102). Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.) Пояснения: лиса и заяц — точки на круге; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.
Задачу решили:
161
всего попыток:
594
Из какого наименьшего числа квадратов, среди которых нет двух равных, можно сложить прямоугольник? (Квадратов должно быть больше одного.) Если Вы считаете, что нельзя, то введите 0.
Задачу решили:
144
всего попыток:
195
Найти среднее арифметическое всех натуральных чисел, десятичная запись которых состоит из 4-х четвёрок, 6-ти шестёрок и 9-ти девяток, записанных в любом порядке. (Например, 4699644466669999999.)
Задачу решили:
149
всего попыток:
200
Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.) Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|