img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Vkorsukov добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 11
всего попыток: 20
Задача опубликована: 05.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Кривая дракона, петляя по плоскости, иногда образовывает замкнутые клетки, равные единичным квадратам. На рисунке, кривая дракона после шести итераций ограничивает 11 таких клеток.

Кривая дракона в прямоугольнике

Сколько таких клеток ограничивает кривая дракона после 13 итераций?

(подробней о кривой дракона см. задачу 2485).

Задачу решили: 13
всего попыток: 52
Задача опубликована: 19.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Гирляндой назовем пять единичных квадратов, шарнирно соединенных диагональными вершинами в незамкнутую цепочку, например, пять квадратов нанизанные на нить (на рисунке, слева).

Шарнирные пентамино

Такие гирлянды легко сворачиваются в фигурки обычного пентамино, например, на рисунке справа показаны I-пентамино и L-пентамино, но можно получить и новые фигурки, как на рисунке самая правая фигурка. Все эти три фигурки отличаются друг от друга положением только одного зеленого квадрата, который поворачивается на угол кратный 90° относительно шарнира. Квадраты могут вращаться вокруг любого своего шарнира. Сколько различных фигурок на клетчатой плоскости можно поочередно сложить из одной гирлянды? Симметричные фигурки и фигурки, полученные поворотом новыми не считаются.

Задачу решили: 10
всего попыток: 13
Задача опубликована: 24.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Треугольный планшет – это доска в форме правильного треугольника со штырями, которые вбиты в узлы треугольной решетки. Имеется неограниченное количество резиновых колец, каждое из которых можно натягивать на три близлежащих штыря так, что резинка принимает контур единичного равностороннего треугольника. Требуется надеть на штыри несколько резинок так, чтобы они охватывали все штыри, при этом каждый штырь может охватывать только одна резинка. Размер планшета определяется числом штырей на одной стороне его треугольного поля.

Треугольные планшеты

На рисунке приведен планшет 9-го размера, здесь же показано, что на штыри этого планшета можно надеть резиновые кольца так, чтобы выполнялись условия задачи. Выясните, для каких планшетов размером от 2 до 100 можно надеть кольца так, чтобы выполнялись условия задачи. В ответе укажите число таких планшетов. 

Задачу решили: 26
всего попыток: 31
Задача опубликована: 09.06.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Натуральное число назовем представимым, если его можно представить в виде такой суммы a+b+ab, где a и b натуральные числа. Например, число 101 представимое, потому что 101 = 5 + 16 + 5 · 16. Сколько представимых чисел среди трехзначных?

Задачу решили: 24
всего попыток: 32
Задача опубликована: 12.06.23 08:00
Прислал: avilow img
Источник: ЕГЭ-2023
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: VVSH (Василий Шедько)

Из пары натуральных чисел (a; b), за один ход получают пару (a+b; a–b). Какое наименьшее a может быть в паре (a; b), из которой за несколько ходов можно получить пару (864; 32).

+ 2
  
Задачу решили: 18
всего попыток: 22
Задача опубликована: 26.06.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

Куб 9х9х9, изображенный на рисунке справа, составлен из единичных кубиков. Эти кубики раскрашены в два цвета так, что некоторые из них образуются трехмерные кресты с общим центром (см. рис.).

Куб 29х29х29

Торцы крестов – это квадраты 1х1, 3х3, 5х5, …, которые составлены из квадратных рамок, чередующихся по цвету. Сколько синих кубиков в кубе 29х29х29, раскрашенного по такому же принципу?

Задачу решили: 24
всего попыток: 31
Задача опубликована: 17.07.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В таблице умножения от 1х1 до 7х7 выделен центральный ступенчатый квадрат максимального размера так, как показано на рисунке.

Ступенчатый квадрат таблицы Пифагора

Сколькими нулями оканчивается произведение чисел во всех клетках такого же ступенчатого квадрата для таблицы умножения от 1х1 до 25х25?

Задачу решили: 24
всего попыток: 29
Задача опубликована: 11.08.23 08:00
Прислал: avilow img
Источник: Конференция компании «КРИПТОНИТ»
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Запись натурального числа начинается с цифры «3». Если эту цифру перенести в конец записи, то число уменьшится втрое. Найдите наименьшее такое число.

Задачу решили: 21
всего попыток: 29
Задача опубликована: 14.08.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На плоскости нарисован правильный треугольник со стороной n, где n∈N. Проведены прямые, содержащие его стороны и всевозможные прямые, параллельные его сторонам и делящие стороны треугольника на единичные отрезки. На сколько частей такие прямые делят плоскость, если за основу взят треугольник со стороной 100?

Треугольник и прямые

Для примера приведена конструкция при n = 3, в которой прямые делят плоскость на 30 частей.

Задачу решили: 21
всего попыток: 26
Задача опубликована: 06.09.23 08:00
Прислал: avilow img
Источник: Сборник издательства "ЛЕГИОН"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

В бесконечно убывающей последовательности 1; 1/2; 1/3; 1/4; 1/5; ... выберите такие десять чисел, которые образуют арифметическую прогрессию, а их сумма – наибольшая. Введите эту сумму.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.