Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
20
всего попыток:
27
Показывая текущее время в часах и минутах, цифры на табло электронных часов могут располагаться строго по возрастанию, например, 0:45 или строго по убыванию, например, 8:30. Посчитайте в течение суток число различных показаний в обоих случаях. В ответе запишите отношение меньшего числа к большему.
Задачу решили:
24
всего попыток:
30
n-ый член последовательности 1, 6, 8, 20, 21, 40, 40, 66, 65, 98, 96, … — это число бесконечной таблицы Пифагора, которого достигает шахматный конь, сделавший n ходов, двигаясь по бесконечной ломаной линии, начиная с числа 1. Маршрут шахматного коня представляет собой бесконечную зигзагообразную ломаную линию, начало которой изображено на рисунке для таблицы 13х13. Все звенья ломаной имеют одинаковую длину и равны длине прыжка шахматного коня. Соседние звенья ломаной перпендикулярны, попеременно меняют направление влево, вправо, влево, вправо, ... Пусть a0=1, a1=6, a2=8. Найдите a111.
Задачу решили:
22
всего попыток:
26
Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем ветвь параболы y=√x и рассмотрим на ней точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (4; 2) — число 51. Пусть an — число, соответствующее точке (n2;n) параболы; тогда a0=1, a1=9, a2=51, a3=295, ... Найдите 23-й член последовательности (an).
Задачу решили:
19
всего попыток:
23
В координатной плоскости Oxy задана парабола y=x2, на которой отмечены все ее точки с целыми координатами. Проведены всевозможные хорды параболы, с концами в отмеченных точках. Расположим хорды в порядке возрастания их длины, без повторений, и рассмотрим последовательность квадратов длин этих хорд. Начало последовательности выглядит так: 2, 4, 10, 16, 18, 20, 26, …. На рисунке изображена хорда AB, которой соответствует а12 = 42+82 = 80. Найдите 64-ый член последовательности.
Задачу решили:
29
всего попыток:
46
Назовем зеркальным числом такое трехзначное число в сумме с трехзначным числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти сумму всех зеркальных числел..
Задачу решили:
33
всего попыток:
40
Ёлочка украшена четырьмя горизонтальными гирляндами и пятью гирляндами, спускающимися с вершины вниз. Во всех гирляндах по пять шариков. Впишите в шарики все целые числа от 1 до 21 (в каждый шарик по одному числу) так, чтобы сумма пяти чисел в каждой из девяти гирлянд была одной и той же. В ответе укажите сумму чисел в одной из гирлянд.
Задачу решили:
34
всего попыток:
41
Ёлочка украшена тремя горизонтальными гирляндами и четырьмя гирляндами, спускающимися с вершины вниз. Во всех гирляндах по четыре шарика. Впишите в шарики все целые числа от 1 до 13 (в каждый шарик по одному числу) так, чтобы сумма четырёх чисел в каждой из семи гирлянд была одной и той же. В ответе укажите сумму чисел в одной из гирлянд.
Задачу решили:
25
всего попыток:
54
В параллелограмм вписана елочка так, как показано на рисунке. Площади трех частей параллелограмма равны 24, 25 и 26. Найдите площадь елочки.
Задачу решили:
19
всего попыток:
25
Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем в ней четыре параболы y=x3, y=–x3, x=y3 и x=–y3. Рассмотрим на параболах точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (2; 8) — число 283. Все такие числа выделены зеленым цветом. Сгруппируем выделенные числа так, чтобы все они (кроме центральной единицы) лежали на концентрических окружностях. На рисунке приведены первые две окружности. Найдите среднее арифметическое чисел, расположенных на 10-ой окружности и укажите его в ответе.
Задачу решили:
21
всего попыток:
27
В куб вписан правильный октаэдр наибольшего объёма. В каком отношении вершины октаэдра делят ребра этого куба? В ответе укажите отношение меньшей части к большей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|