img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 19
всего попыток: 111
Задача опубликована: 22.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Найдите полный набор фигурок «тридомино». Из k фигурок этого набора можно сложить прямоугольник 6хk, например, на рисунке показан прямоугольник 6х10, сложенный из десяти фигурок.

Тридомино

Сложите прямоугольник, употребив большее число фигурок найденного набора, причем, каждую фигурку можно использовать один раз. В ответе укажите наибольшее значение k.

Уточним: 1) две фигурки различны, если их контуры нельзя совместить;

2) при построении прямоугольника фигурки можно как угодно поворачивать и переворачивать.

Задачу решили: 27
всего попыток: 30
Задача опубликована: 02.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению.

14 кубиков - 23421314

Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.

Задачу решили: 23
всего попыток: 36
Задача опубликована: 11.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

На рисунке слева показан пример умножения двух трехзначных чисел 504 и 463. Он записан с отображением промежуточных произведений. На рисунке справа этот же пример записан с использованием 12 костяшек домино.

Умножение и домино

Найдите другой пример умножения двух многозначных чисел, записанный в таком же формате, причем каждый множитель должен содержать хотя бы по две ненулевых цифры, промежуточные нулевые произведения не записываются и не учитываются.

В ответе укажите наименьшее возможное число костяшек. В задаче используется стандартный набор домино, в котором 28 костяшек домино.

Задачу решили: 28
всего попыток: 60
Задача опубликована: 15.06.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

В кружках фигуры расставлены числа от 1 до 13.

Числовой бриллиант

Переставьте несколько чисел так, чтобы суммы четырех чисел, расположенных в кружках-вершинах всех квадратов (убедитесь, что их 11), были равными. В ответе укажите наименьшее количество переставленных чисел.

Задачу решили: 23
всего попыток: 47
Задача опубликована: 03.05.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Существует несколько фигурок тридомино, некоторые из них являются разверткой куба.

Тридомино

Выясните какие, и в ответе укажите количество таких тридомино.

Задачу решили: 24
всего попыток: 51
Задача опубликована: 18.06.21 08:00
Прислал: avilow img
Источник: Бразильский математический форум
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Натуральные числа от 1 до n расставлены по кругу (без повторов) так, что сумма любых двух соседних чисел равна точному квадрату. При каком наименьшем значении n такая расстановка возможна?

Числовые ожерелья

Для примера, на рисунке приведена расстановка чисел при n=15, в которой сумма любых двух соседних чисел является квадратным числом, кроме лишь одной, выделенной красным отрезком. 

Задачу решили: 29
всего попыток: 50
Задача опубликована: 19.07.21 10:38
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

В период спада эпидемии короновируса в специализированные больницы города N в течении недели ежесуточно поступали больные, число которых в среднем составляет 3% от числа больных, лечившихся в этих больницах в предыдущие сутки и, ежесуточно выздоравливало в среднем 28% от числа больных, лечившихся в больницах города в предыдущие сутки. Сколько больных находилось в больницах города в начале этой недели, если в конце недели их оставалось 4374 человека.

Задачу решили: 24
всего попыток: 96
Задача опубликована: 28.07.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке изображена фигура тетрамино, состоящая из четырех одинаковых кубиков.

Параллепипед из тетрамино

Из какого наименьшего количества таких тетрамино можно сложить прямоугольный параллелепипед?

Задачу решили: 25
всего попыток: 62
Задача опубликована: 25.08.21 08:00
Прислал: avilow img
Источник: Р. Уилер
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Числовому равенству 33+43+53=63 соответствует геометрическое равенство.

Из трех кубов один

Это геометрическое равенство можно доказать разрезанием меньших кубов на части, из которых затем складывается большой куб 6х6х6. Из какого наименьшего числа частей может при этом состоять куб 6х6х6?

Задачу решили: 25
всего попыток: 82
Задача опубликована: 13.09.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков.

Самый длинный маршрут

Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.