img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: tubaki решил задачу "Новогодний ребус" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 22
всего попыток: 36
Задача опубликована: 01.10.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Восемнадцать натуральных чисел от 1 до 18 можно разместить по кругу так, что любые два соседних в сумме давали треугольное число. Записав затем все числа в ряд друг за другом без пробелов, получим 27-значное число. Найдите наименьшее такое число.

Задачу решили: 20
всего попыток: 89
Задача опубликована: 11.10.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: шахматыimg
Лучшее решение: Vkorsukov

На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков.

Самый длинный маршрут - 2

Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.

Задачу решили: 31
всего попыток: 43
Задача опубликована: 19.11.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Вершины квадрата отрезками соединены с серединами его сторон.

Мозаика в квадрате

При этом квадрат разбивается на несколько частей, из которых некоторые закрашены. Какая часть квадрата закрашена?

Задачу решили: 24
всего попыток: 64
Задача опубликована: 14.02.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке приведен фрагмент школьного трафарета с четырьмя правильными многоугольниками.

Фигуры трафарета

Начертите их на бумаге и выясните, какие из этих многоугольников можно разрезать на четыре равнобедренных треугольника, среди которых нет равных? (Треугольники нельзя складывать из более мелких частей.)

Если можно разрезать, то ставим 1, если нельзя, то ставим 0, и, таким образом, ответ записывается четырехзначным числом, состоящем из нулей и единиц, порядок которых определяет расположение многоугольников на трафарете слева на право.

Задачу решили: 19
всего попыток: 100
Задача опубликована: 07.03.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В кружки фигуры, изображенной на рисунке, расставлены натуральные числа от 1 до 49, и в каждом квадрате найдена сумма четырех чисел, расположенных в его вершинах, после чего квадраты с одинаковыми суммами закрашены одним цветом. 

Максимум одинаковых сумм

В этой расстановке максимум одинаковых сумм равен числу зеленых клеток, то есть 7. Расставьте эти числа в другом порядке, просуммируйте четверки чисел и раскрасьте квадраты указанным образом. В ответе укажите наибольшее возможное число одноцветных квадратов.

Уточним, рассматриваются только квадраты равные закрашенным.

Задачу решили: 18
всего попыток: 74
Задача опубликована: 22.04.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Из четырех шнуров сплетена коса (рис. слева).

Расплетание косы

Верхние концы шнуров неподвижны, они прикреплены к основе. Нижние концы шнуров прикреплены к магнитам 1-2-4-5, выстроенным в ряд на этой же основе. За счёт одного свободного магнита 3 положение нижних концов шнуров можно менять. Перемещение нижнего конца шнура с одного магнита на другой называется ходом. За какое наименьшее число ходов можно расплести косу, то есть добиться положения, в котором никакие два шнура не пересекаются, и при этом нижние концы шнуров по-прежнему занимают позиции 1-2-4-5 (рис. справа)?  

Задачу решили: 27
всего попыток: 50
Задача опубликована: 06.06.22 08:00
Прислал: avilow img
Источник: ЕГЭ-2022
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Есть три коробки: в первой коробке 97 камней, во второй – 104, а в третьей коробке камней нет. За один ход берут по одному камню из любых двух коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов. В первой коробке оказался 1 камень. Какое наибольшее число камней могло оказаться в третьей коробке?

Задачу решили: 17
всего попыток: 37
Задача опубликована: 22.07.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Любитель комбинаторной геометрии каждый год рисует правильный треугольник, длина стороны которого равна номеру этого года, и прямыми параллельными сторонам треугольника делит его на правильные треугольники со стороной 1.  В полученной таким образом треугольной сетке он закрашивает несколько треугольных ячеек так, чтобы они не пересекались, и при этом старается закрасить все узлы треугольной сетки. В 2022 году любителю не удалось это сделать. В каком ближайшем году он сможет закрасить сетку нужным образом?

Узлы и ячейки треугольной сетки

На рисунке приведен пример неудачной раскраски сетки, так как остались три незакрашенных узла.

Задачу решили: 6
всего попыток: 26
Задача опубликована: 26.09.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

На плоскости можно провести несколько прямых так, что они, пересекаясь друг с другом, образуют несколько не перекрывающихся пятиконечных звезд, употребив при этом наименьшее число прямых. Например, рисунке показано, как 1 звезду нарисовать 5 прямыми, 3 звезды нарисовать 8 прямыми, как 3 звезды нарисовать 9 прямыми.

Прямые и звезды

Как нарисовать 7 звезд проведя наименьшее число прямых? В ответе укажите число прямых.

Важно учитывать, что в предложенной конструкции при продолжении прямых не должны появляться новые звезды.

Задачу решили: 17
всего попыток: 24
Задача опубликована: 05.10.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Для каких простых чисел n, начиная с 2 и не превосходящих 100, число полученных частей в квадрате является простым? В ответе укажите сумму всех таких n.

Квадраты в квадрате

На рисунке приведен квадрат со стороной 4, в который вписаны 3 меньших квадрата.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.