Лента событий:
tubaki решил задачу "Новогодний ребус" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
36
Восемнадцать натуральных чисел от 1 до 18 можно разместить по кругу так, что любые два соседних в сумме давали треугольное число. Записав затем все числа в ряд друг за другом без пробелов, получим 27-значное число. Найдите наименьшее такое число.
Задачу решили:
20
всего попыток:
89
На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков. Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.
Задачу решили:
31
всего попыток:
43
Вершины квадрата отрезками соединены с серединами его сторон. При этом квадрат разбивается на несколько частей, из которых некоторые закрашены. Какая часть квадрата закрашена?
Задачу решили:
24
всего попыток:
64
На рисунке приведен фрагмент школьного трафарета с четырьмя правильными многоугольниками. Начертите их на бумаге и выясните, какие из этих многоугольников можно разрезать на четыре равнобедренных треугольника, среди которых нет равных? (Треугольники нельзя складывать из более мелких частей.) Если можно разрезать, то ставим 1, если нельзя, то ставим 0, и, таким образом, ответ записывается четырехзначным числом, состоящем из нулей и единиц, порядок которых определяет расположение многоугольников на трафарете слева на право.
Задачу решили:
19
всего попыток:
100
В кружки фигуры, изображенной на рисунке, расставлены натуральные числа от 1 до 49, и в каждом квадрате найдена сумма четырех чисел, расположенных в его вершинах, после чего квадраты с одинаковыми суммами закрашены одним цветом. В этой расстановке максимум одинаковых сумм равен числу зеленых клеток, то есть 7. Расставьте эти числа в другом порядке, просуммируйте четверки чисел и раскрасьте квадраты указанным образом. В ответе укажите наибольшее возможное число одноцветных квадратов. Уточним, рассматриваются только квадраты равные закрашенным.
Задачу решили:
18
всего попыток:
74
Из четырех шнуров сплетена коса (рис. слева). Верхние концы шнуров неподвижны, они прикреплены к основе. Нижние концы шнуров прикреплены к магнитам 1-2-4-5, выстроенным в ряд на этой же основе. За счёт одного свободного магнита 3 положение нижних концов шнуров можно менять. Перемещение нижнего конца шнура с одного магнита на другой называется ходом. За какое наименьшее число ходов можно расплести косу, то есть добиться положения, в котором никакие два шнура не пересекаются, и при этом нижние концы шнуров по-прежнему занимают позиции 1-2-4-5 (рис. справа)?
Задачу решили:
27
всего попыток:
50
Есть три коробки: в первой коробке 97 камней, во второй – 104, а в третьей коробке камней нет. За один ход берут по одному камню из любых двух коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов. В первой коробке оказался 1 камень. Какое наибольшее число камней могло оказаться в третьей коробке?
Задачу решили:
17
всего попыток:
37
Любитель комбинаторной геометрии каждый год рисует правильный треугольник, длина стороны которого равна номеру этого года, и прямыми параллельными сторонам треугольника делит его на правильные треугольники со стороной 1. В полученной таким образом треугольной сетке он закрашивает несколько треугольных ячеек так, чтобы они не пересекались, и при этом старается закрасить все узлы треугольной сетки. В 2022 году любителю не удалось это сделать. В каком ближайшем году он сможет закрасить сетку нужным образом? На рисунке приведен пример неудачной раскраски сетки, так как остались три незакрашенных узла.
Задачу решили:
6
всего попыток:
26
На плоскости можно провести несколько прямых так, что они, пересекаясь друг с другом, образуют несколько не перекрывающихся пятиконечных звезд, употребив при этом наименьшее число прямых. Например, рисунке показано, как 1 звезду нарисовать 5 прямыми, 3 звезды нарисовать 8 прямыми, как 3 звезды нарисовать 9 прямыми. Как нарисовать 7 звезд проведя наименьшее число прямых? В ответе укажите число прямых. Важно учитывать, что в предложенной конструкции при продолжении прямых не должны появляться новые звезды.
Задачу решили:
17
всего попыток:
24
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Для каких простых чисел n, начиная с 2 и не превосходящих 100, число полученных частей в квадрате является простым? В ответе укажите сумму всех таких n. На рисунке приведен квадрат со стороной 4, в который вписаны 3 меньших квадрата.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|