Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
20
всего попыток:
27
Показывая текущее время в часах и минутах, цифры на табло электронных часов могут располагаться строго по возрастанию, например, 0:45 или строго по убыванию, например, 8:30. Посчитайте в течение суток число различных показаний в обоих случаях. В ответе запишите отношение меньшего числа к большему.
Задачу решили:
29
всего попыток:
46
Назовем зеркальным числом такое трехзначное число в сумме с трехзначным числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти сумму всех зеркальных числел..
Задачу решили:
20
всего попыток:
24
На плоскости Вася провел 100 параллельных прямых, Петя провел еще 100 прямых. Все эти 200 прямых разделили плоскость на несколько частей. Какое наибольшее число частей могло получиться у них при делении плоскости этими прямыми? Например, если мальчики провели по две прямые, то плоскость может быть разделена максимум на 10 частей (см. рис.).
Задачу решили:
13
всего попыток:
52
Гирляндой назовем пять единичных квадратов, шарнирно соединенных диагональными вершинами в незамкнутую цепочку, например, пять квадратов нанизанные на нить (на рисунке, слева). Такие гирлянды легко сворачиваются в фигурки обычного пентамино, например, на рисунке справа показаны I-пентамино и L-пентамино, но можно получить и новые фигурки, как на рисунке самая правая фигурка. Все эти три фигурки отличаются друг от друга положением только одного зеленого квадрата, который поворачивается на угол кратный 90° относительно шарнира. Квадраты могут вращаться вокруг любого своего шарнира. Сколько различных фигурок на клетчатой плоскости можно поочередно сложить из одной гирлянды? Симметричные фигурки и фигурки, полученные поворотом новыми не считаются.
Задачу решили:
10
всего попыток:
13
Треугольный планшет – это доска в форме правильного треугольника со штырями, которые вбиты в узлы треугольной решетки. Имеется неограниченное количество резиновых колец, каждое из которых можно натягивать на три близлежащих штыря так, что резинка принимает контур единичного равностороннего треугольника. Требуется надеть на штыри несколько резинок так, чтобы они охватывали все штыри, при этом каждый штырь может охватывать только одна резинка. Размер планшета определяется числом штырей на одной стороне его треугольного поля. На рисунке приведен планшет 9-го размера, здесь же показано, что на штыри этого планшета можно надеть резиновые кольца так, чтобы выполнялись условия задачи. Выясните, для каких планшетов размером от 2 до 100 можно надеть кольца так, чтобы выполнялись условия задачи. В ответе укажите число таких планшетов.
Задачу решили:
26
всего попыток:
31
Натуральное число назовем представимым, если его можно представить в виде такой суммы a+b+ab, где a и b натуральные числа. Например, число 101 представимое, потому что 101 = 5 + 16 + 5 · 16. Сколько представимых чисел среди трехзначных?
Задачу решили:
24
всего попыток:
32
Из пары натуральных чисел (a; b), за один ход получают пару (a+b; a–b). Какое наименьшее a может быть в паре (a; b), из которой за несколько ходов можно получить пару (864; 32).
Задачу решили:
24
всего попыток:
31
В таблице умножения от 1х1 до 7х7 выделен центральный ступенчатый квадрат максимального размера так, как показано на рисунке. Сколькими нулями оканчивается произведение чисел во всех клетках такого же ступенчатого квадрата для таблицы умножения от 1х1 до 25х25?
Задачу решили:
24
всего попыток:
29
Запись натурального числа начинается с цифры «3». Если эту цифру перенести в конец записи, то число уменьшится втрое. Найдите наименьшее такое число.
Задачу решили:
18
всего попыток:
20
Учительница написала на доске трехзначное число АНА, и каждому ученику раздала по карточке, с двумя разными цифрами n и m, все четыре натуральных числа A, H, m и n - различны. Девочек она попросила найти значения выражения An + Hm + An, а мальчиков попросила найти значение выражения Am + Hn + Am. Выполнив задание, ученики удивились, потому что и у девочек, и у мальчиков получилось одно и тоже число. Какое наибольшее число АНА учительница могла написать на доске? Светлая память Анне Николаевне Андреевой, учителю математики и нашей коллеге на Диофанте.ру с ником xyz, позже AnnaAndreeva.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|