img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 20
всего попыток: 68
Задача опубликована: 19.08.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке.

Вписанные звезды

Сколько треугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100?

Обратите внимание, что здесь кроме красных и белых треугольников имеются красно-белые треугольники.

Задачу решили: 37
всего попыток: 58
Задача опубликована: 02.12.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Первые десять натуральных чисел разбейте на пары так, чтобы из пяти прямоугольников с длинами сторон, соответствующих парам, можно было сложить квадрат. В ответе укажите площадь наибольшего такого квадрата.

Задачу решили: 33
всего попыток: 37
Задача опубликована: 10.04.20 08:00
Прислал: avilow img
Источник: По мотивам ЕГЭ
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Клетки таблицы 7x13 раскрашены в чёрный и белый цвета. Пар соседних клеток разного цвета всего 60, пар соседних клеток белого цвета всего 78. Сколько пар соседних клеток черного цвета?

Задачу решили: 19
всего попыток: 111
Задача опубликована: 22.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Найдите полный набор фигурок «тридомино». Из k фигурок этого набора можно сложить прямоугольник 6хk, например, на рисунке показан прямоугольник 6х10, сложенный из десяти фигурок.

Тридомино

Сложите прямоугольник, употребив большее число фигурок найденного набора, причем, каждую фигурку можно использовать один раз. В ответе укажите наибольшее значение k.

Уточним: 1) две фигурки различны, если их контуры нельзя совместить;

2) при построении прямоугольника фигурки можно как угодно поворачивать и переворачивать.

Задачу решили: 23
всего попыток: 47
Задача опубликована: 03.05.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Каждая фигурка тридомино состоит из трех домино. Домино – это прямоугольник 1х2. Соседние домино в каждой фигурке имеют общую границу длиной 1 или 2. Существует несколько фигурок тридомино, некоторые из них являются разверткой куба.

Тридомино

Выясните какие, и в ответе укажите количество таких тридомино.

Задачу решили: 25
всего попыток: 62
Задача опубликована: 25.08.21 08:00
Прислал: avilow img
Источник: Р. Уилер
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Числовому равенству 33+43+53=63 соответствует геометрическое равенство.

Из трех кубов один

Это геометрическое равенство можно доказать разрезанием меньших кубов на части, из которых затем складывается большой куб 6х6х6. Из какого наименьшего числа частей может при этом состоять куб 6х6х6?

Задачу решили: 17
всего попыток: 37
Задача опубликована: 22.07.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Любитель комбинаторной геометрии каждый год рисует правильный треугольник, длина стороны которого равна номеру этого года, и прямыми параллельными сторонам треугольника делит его на правильные треугольники со стороной 1.  В полученной таким образом треугольной сетке он закрашивает несколько треугольных ячеек так, чтобы они не пересекались, и при этом старается закрасить все узлы треугольной сетки. В 2022 году любителю не удалось это сделать. В каком ближайшем году он сможет закрасить сетку нужным образом?

Узлы и ячейки треугольной сетки

На рисунке приведен пример неудачной раскраски сетки, так как остались три незакрашенных узла.

Задачу решили: 6
всего попыток: 26
Задача опубликована: 26.09.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

На плоскости можно провести несколько прямых так, что они, пересекаясь друг с другом, образуют несколько не перекрывающихся пятиконечных звезд, употребив при этом наименьшее число прямых. Например, рисунке показано, как 1 звезду нарисовать 5 прямыми, 3 звезды нарисовать 8 прямыми, как 3 звезды нарисовать 9 прямыми.

Прямые и звезды

Как нарисовать 7 звезд проведя наименьшее число прямых? В ответе укажите число прямых.

Важно учитывать, что в предложенной конструкции при продолжении прямых не должны появляться новые звезды.

Задачу решили: 17
всего попыток: 24
Задача опубликована: 05.10.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Для каких простых чисел n, начиная с 2 и не превосходящих 100, число полученных частей в квадрате является простым? В ответе укажите сумму всех таких n.

Квадраты в квадрате

На рисунке приведен квадрат со стороной 4, в который вписаны 3 меньших квадрата.

Задачу решили: 20
всего попыток: 24
Задача опубликована: 27.03.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Lec

На плоскости Вася провел 100 параллельных прямых, Петя провел еще 100 прямых. Все эти 200 прямых разделили плоскость на несколько частей. Какое наибольшее число частей могло получиться у них при делении плоскости этими прямыми?

200 прямых плоскости

Например, если мальчики провели по две прямые, то плоскость может быть разделена максимум на 10 частей (см. рис.).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.