Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
67
Натуральное n-значное число равно n-ой степени суммы его цифр. Найтите все такие числа, в ответе укажите их сумму.
Задачу решили:
51
всего попыток:
68
Книга сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Все страницы книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради равна 338. Сколько страниц в этой книге?
Задачу решили:
67
всего попыток:
77
Решите уравнение 1+2+3+...+n=1*2*3*...*m, где n и m неравные натуральные числа. В ответе укажите произведение nm.
Задачу решили:
38
всего попыток:
46
В натуральном ряду чисел найдите отрезок [m;n], сумма всех чисел которого равна s, причем числа m, n и s - различные квадраты. В ответе укажите наименьшую возможную сумму s.
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
23
всего попыток:
36
На рисунке слева показан пример умножения двух трехзначных чисел 504 и 463. Он записан с отображением промежуточных произведений. На рисунке справа этот же пример записан с использованием 12 костяшек домино. Найдите другой пример умножения двух многозначных чисел, записанный в таком же формате, причем каждый множитель должен содержать хотя бы по две ненулевых цифры, промежуточные нулевые произведения не записываются и не учитываются. В ответе укажите наименьшее возможное число костяшек. В задаче используется стандартный набор домино, в котором 28 костяшек домино.
Задачу решили:
28
всего попыток:
60
В кружках фигуры расставлены числа от 1 до 13. Переставьте несколько чисел так, чтобы суммы четырех чисел, расположенных в кружках-вершинах всех квадратов (убедитесь, что их 11), были равными. В ответе укажите наименьшее количество переставленных чисел.
Задачу решили:
29
всего попыток:
50
В период спада эпидемии короновируса в специализированные больницы города N в течении недели ежесуточно поступали больные, число которых в среднем составляет 3% от числа больных, лечившихся в этих больницах в предыдущие сутки и, ежесуточно выздоравливало в среднем 28% от числа больных, лечившихся в больницах города в предыдущие сутки. Сколько больных находилось в больницах города в начале этой недели, если в конце недели их оставалось 4374 человека.
Задачу решили:
22
всего попыток:
36
Восемнадцать натуральных чисел от 1 до 18 можно разместить по кругу так, что любые два соседних в сумме давали треугольное число. Записав затем все числа в ряд друг за другом без пробелов, получим 27-значное число. Найдите наименьшее такое число.
Задачу решили:
20
всего попыток:
27
Показывая текущее время в часах и минутах, цифры на табло электронных часов могут располагаться строго по возрастанию, например, 0:45 или строго по убыванию, например, 8:30. Посчитайте в течение суток число различных показаний в обоих случаях. В ответе запишите отношение меньшего числа к большему.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|