Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
58
В квадрате ABCD расположена окружность. Из вершин квадрата к окружности проведены отрезки касательных, на которых построены четыре равносторонних треугольника (см. рис.). Три из них имеют площади 15, 20, 42. Найдите площадь четвертого треугольника.
Задачу решили:
19
всего попыток:
48
Три попарно неравных квадрата площади S1, S2 и S3 имеют общую вершину (и только её), при этом вершины всех квадратов расположены в узлах квадратной решетки 1х1. Ближайшие вершины соседних квадратов соединены отрезками, на которых построены ещё три квадрата, площадь каждого из них равна 10 (смотрите рисунок). Найдите наименьшее значение суммы S1+S2+S3 и укажите его в ответе.
Задачу решили:
37
всего попыток:
52
Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел. Рассмотрим треугольные рамки, у которых одна вершина совпадает с вершиной пирамиды, две стороны параллельны боковым сторонам пирамиды, третья сторона содержит n-ую строку числовой пирамиды. На рисунке показана 6-ая рамка. Чему равна сумма всех чисел в 123-ей треугольной рамке?
Задачу решили:
29
всего попыток:
37
Таблица Пифагора – это квадратная таблица, в каждой ячейке которой записано число, равное произведению номера строки и номера столбца. Побочная диагональ разбивает таблицу на две треугольные области. Найдите отношение суммы чисел, расположенных выше и левее побочной диагонали таблицы 100х100 к сумме чисел, расположенных ниже и правее побочной диагонали этой таблицы. Для примера, все числа побочной диагонали выделены зеленым цветом на таблице 9х9.
Задачу решили:
31
всего попыток:
36
В куб вписаны три равных октаэдра. Две вершины каждого октаэдра лежат в центрах противоположных граней куба, а другие четыре вершины – середины ребер куба, перпендикулярных этим граням. Многогранник, являющийся объединением этих трех октаэдров, изображен на рисунке. Какую часть куба составляет объем этого многогранника?
Задачу решили:
24
всего попыток:
39
В треугольник Рело вписан правильный шестиугольник (см. рис.). Найдите площадь шестиугольника, если |АВ|=65.
Задачу решили:
16
всего попыток:
33
Куб 3х3х3 разбит на единичные кубики, все их вершины отмечены точками. Найдите число всех правильных треугольников, вершинами которых являются отмеченные точки. Три из них изображены на рисунке.
Задачу решили:
23
всего попыток:
32
В квадратной таблице nxn проведена несамопересекающая ломаная, все звенья которой лежат на внутренних перегородках между клетками 1х1. Ломаная делит таблицу на две части, клетки одной части закращена черным. При этом оказалось, что в таблице число бело-белых соседних клеток равно числу бело-черных соседних клеток и равно числу черно-черных соседних клеток. Найдите длину ломаной, если известно, что её длина в 66 раз больше стороны n данной таблицы. Например, в таблице 3х3 проведена ломаная АВС длиной 4. Здесь каждого типа соседних клеток по 4.
Задачу решили:
22
всего попыток:
43
Две равные фигуры сложены из единичных кубиков, одна из белых кубиков, другая – из черных, причем, из этих двух фигур можно сложить куб n×n×n без пустот внутри. Оказалось, что в сложенном кубе число бело-белых соседних кубиков (т. е. имеющих общую грань) равно числу бело-черных соседних кубиков и равно числу черно-черных соседних кубиков. При каком n площадь поверхности одной из фигур в два раза больше площади поверхности куба.
Задачу решили:
30
всего попыток:
38
В окружности с центром O построен правильный шестиугольник KOFPDL так, что его вершина D лежит на окружности. Из точки B, диаметрально противоположной точке D, проведены две хорды AB и BC, проходящие через вершины K и F шестиугольника соответственно. Найти отношение площади шестиугольника KOFPDL к площади четырехугольника ABCD.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|