Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
19
всего попыток:
21
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. Для каких простых чисел n начиная с 2 и не превосходящих 1000, число полученных частей в треугольнике является квадратным? В ответе укажите сумму всех таких n. На рисунке приведен равносторонний треугольник со стороной 6, в который вписаны 5 меньших равносторонних треугольников.
Задачу решили:
24
всего попыток:
30
n-ый член последовательности 1, 6, 8, 20, 21, 40, 40, 66, 65, 98, 96, … — это число бесконечной таблицы Пифагора, которого достигает шахматный конь, сделавший n ходов, двигаясь по бесконечной ломаной линии, начиная с числа 1. Маршрут шахматного коня представляет собой бесконечную зигзагообразную ломаную линию, начало которой изображено на рисунке для таблицы 13х13. Все звенья ломаной имеют одинаковую длину и равны длине прыжка шахматного коня. Соседние звенья ломаной перпендикулярны, попеременно меняют направление влево, вправо, влево, вправо, ... Пусть a0=1, a1=6, a2=8. Найдите a111.
Задачу решили:
22
всего попыток:
26
Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем ветвь параболы y=√x и рассмотрим на ней точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (4; 2) — число 51. Пусть an — число, соответствующее точке (n2;n) параболы; тогда a0=1, a1=9, a2=51, a3=295, ... Найдите 23-й член последовательности (an).
Задачу решили:
19
всего попыток:
23
В координатной плоскости Oxy задана парабола y=x2, на которой отмечены все ее точки с целыми координатами. Проведены всевозможные хорды параболы, с концами в отмеченных точках. Расположим хорды в порядке возрастания их длины, без повторений, и рассмотрим последовательность квадратов длин этих хорд. Начало последовательности выглядит так: 2, 4, 10, 16, 18, 20, 26, …. На рисунке изображена хорда AB, которой соответствует а12 = 42+82 = 80. Найдите 64-ый член последовательности.
Задачу решили:
25
всего попыток:
54
В параллелограмм вписана елочка так, как показано на рисунке. Площади трех частей параллелограмма равны 24, 25 и 26. Найдите площадь елочки.
Задачу решили:
19
всего попыток:
25
Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке. Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем в ней четыре параболы y=x3, y=–x3, x=y3 и x=–y3. Рассмотрим на параболах точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (2; 8) — число 283. Все такие числа выделены зеленым цветом. Сгруппируем выделенные числа так, чтобы все они (кроме центральной единицы) лежали на концентрических окружностях. На рисунке приведены первые две окружности. Найдите среднее арифметическое чисел, расположенных на 10-ой окружности и укажите его в ответе.
Задачу решили:
19
всего попыток:
23
Рассмотрим бесконечную клетчатую плоскость, по линиям сетки которой нарисована спираль шириной в одну клетку, закручивающаяся по часовой стрелке (см рис.). Имеется игральный кубик с числами 1, 2, 3, 4, 5 и 6 (обозначены точками), в котором сумма очков на противоположных гранях равна 7. Размер грани кубика совпадает с размером клетки плоскости. В начальную клетку спирали поставлен игральный кубик так, что на его верхней грани расположена 1, на передней — 4, на правой — 5. Кубик, перекатываясь через ребро, попадает в следующую клетку по спирали, и так далее, двигаясь по клеткам нарисованной спирали. В каждую клетку спирали вписывается число, расположенное на верхней грани игрального кубика, прокатившегося по ней, и таким образом, задается последовательность: 1, 2, 3, 1, 4, 2, …, в которой a9=4. Найдите пятизначное число, у которого число единиц равно a1, число десятков - a10, число сотен – a100, число тысяч - a1000, число десятков тысяч - a10000.
Задачу решили:
16
всего попыток:
31
В координатной плоскости Oxy расположена парабола y=x2. На ось Оy «нанизаны» 13 квадратов так, что две вершины каждого квадрата, лежат на оси параболы, а две другие принадлежат параболе. При этом размеры квадратов подобраны так, что нижние вершины квадратов имеют ординаты 0, 1, 2, 3, … , 12. На сколько частей границы этих квадратов делят внутреннюю часть параболы y=x2. Например, на рисунке показано, что три первых квадрата делят внутреннюю часть параболы y=x2 на 13 частей.
Задачу решили:
13
всего попыток:
23
Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждый шаг итерации удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. На рисунке приведена кривая дракона после шести итераций. Эта ломаная помещается в наименьший прямоугольник размером 7х11 и площадью 77. Какова площадь наименьшего прямоугольника, в котором помещает кривая дракона после 13 итераций? Рассматриваются прямоугольники, стороны которых параллельны соответствующим звеньям кривой дракона. Подробней смотрите статью в Википедии «Кривая дракона».
Задачу решили:
20
всего попыток:
27
Сколько существует прямоугольных параллелепипедов с целочисленными измерениями, у которых числовые значения площади поверхности и объема равны?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|