img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 33
всего попыток: 52
Задача опубликована: 11.02.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Имеется набор равносторонних треугольников из бумаги, в котором:
n треугольников со стороной 1,
(n-1) треугольников со стороной 2,
................................................
2 треугольника со стороной (n-1),
1 треугольник со стороной n. 

Оказалось, что всеми треугольниками из этого набора можно оклеить без пробелов и наложений поверхность правильного тетраэдра, длина ребра которого является натуральным числом N. При оклейке треугольники можно перегибать через ребро тетраэдра.

Сколько треугольников в этом наборе, если N принимает наименьшее возможное значение.  

Задачу решили: 46
всего попыток: 64
Задача опубликована: 15.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Пространственный крест, изображенный на рисунке, составлен из семи единичных кубиков.

Домино

Ученик отметил вершины всех единичных кубиков этой фигуры и вычислил расстояния между парами различных вершин. Он утверждает, что ему удалось найти такие расстояния: √1, √2, √3, √4, √5, √6, √7, √8, √9, √10, √11, √12. Сколько ошибок допустил ученик?

Задачу решили: 27
всего попыток: 44
Задача опубликована: 21.05.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Внутри цилиндра расположен куб ABCDA1B1C1D1 так, что все его вершины лежат на поверхности цилиндра, причем вершины B и D1 совпадают с центрами оснований, а остальные вершины лежат на боковой поверхности цилиндра. Найдите объем цилиндра, если квадрат ребра куба равен 27. Объём цилиндра будет иметь вид kπ. В ответе укажите числовой множитель k.

Задачу решили: 31
всего попыток: 36
Задача опубликована: 07.02.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В куб вписаны три равных октаэдра. Две вершины каждого октаэдра лежат в центрах противоположных граней куба, а другие четыре вершины – середины ребер куба, перпендикулярных этим граням. Многогранник, являющийся объединением этих трех октаэдров, изображен на рисунке.

Кристалл - 2

Какую часть куба составляет объем этого многогранника?

Задачу решили: 20
всего попыток: 27
Задача опубликована: 01.05.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

Сколько существует прямоугольных параллелепипедов с целочисленными измерениями, у которых числовые значения площади поверхности и объема равны?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.