Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
16
всего попыток:
33
Куб 3х3х3 разбит на единичные кубики, все их вершины отмечены точками. Найдите число всех правильных треугольников, вершинами которых являются отмеченные точки. Три из них изображены на рисунке.
Задачу решили:
23
всего попыток:
32
В квадратной таблице nxn проведена несамопересекающая ломаная, все звенья которой лежат на внутренних перегородках между клетками 1х1. Ломаная делит таблицу на две части, клетки одной части закращена черным. При этом оказалось, что в таблице число бело-белых соседних клеток равно числу бело-черных соседних клеток и равно числу черно-черных соседних клеток. Найдите длину ломаной, если известно, что её длина в 66 раз больше стороны n данной таблицы. Например, в таблице 3х3 проведена ломаная АВС длиной 4. Здесь каждого типа соседних клеток по 4.
Задачу решили:
22
всего попыток:
43
Две равные фигуры сложены из единичных кубиков, одна из белых кубиков, другая – из черных, причем, из этих двух фигур можно сложить куб n×n×n без пустот внутри. Оказалось, что в сложенном кубе число бело-белых соседних кубиков (т. е. имеющих общую грань) равно числу бело-черных соседних кубиков и равно числу черно-черных соседних кубиков. При каком n площадь поверхности одной из фигур в два раза больше площади поверхности куба.
Задачу решили:
17
всего попыток:
37
Любитель комбинаторной геометрии каждый год рисует правильный треугольник, длина стороны которого равна номеру этого года, и прямыми параллельными сторонам треугольника делит его на правильные треугольники со стороной 1. В полученной таким образом треугольной сетке он закрашивает несколько треугольных ячеек так, чтобы они не пересекались, и при этом старается закрасить все узлы треугольной сетки. В 2022 году любителю не удалось это сделать. В каком ближайшем году он сможет закрасить сетку нужным образом? На рисунке приведен пример неудачной раскраски сетки, так как остались три незакрашенных узла.
Задачу решили:
19
всего попыток:
21
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. Для каких простых чисел n начиная с 2 и не превосходящих 1000, число полученных частей в треугольнике является квадратным? В ответе укажите сумму всех таких n. На рисунке приведен равносторонний треугольник со стороной 6, в который вписаны 5 меньших равносторонних треугольников.
Задачу решили:
6
всего попыток:
26
На плоскости можно провести несколько прямых так, что они, пересекаясь друг с другом, образуют несколько не перекрывающихся пятиконечных звезд, употребив при этом наименьшее число прямых. Например, рисунке показано, как 1 звезду нарисовать 5 прямыми, 3 звезды нарисовать 8 прямыми, как 3 звезды нарисовать 9 прямыми. Как нарисовать 7 звезд проведя наименьшее число прямых? В ответе укажите число прямых. Важно учитывать, что в предложенной конструкции при продолжении прямых не должны появляться новые звезды.
Задачу решили:
17
всего попыток:
24
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Для каких простых чисел n, начиная с 2 и не превосходящих 100, число полученных частей в квадрате является простым? В ответе укажите сумму всех таких n. На рисунке приведен квадрат со стороной 4, в который вписаны 3 меньших квадрата.
Задачу решили:
19
всего попыток:
23
Рассмотрим бесконечную клетчатую плоскость, по линиям сетки которой нарисована спираль шириной в одну клетку, закручивающаяся по часовой стрелке (см рис.). Имеется игральный кубик с числами 1, 2, 3, 4, 5 и 6 (обозначены точками), в котором сумма очков на противоположных гранях равна 7. Размер грани кубика совпадает с размером клетки плоскости. В начальную клетку спирали поставлен игральный кубик так, что на его верхней грани расположена 1, на передней — 4, на правой — 5. Кубик, перекатываясь через ребро, попадает в следующую клетку по спирали, и так далее, двигаясь по клеткам нарисованной спирали. В каждую клетку спирали вписывается число, расположенное на верхней грани игрального кубика, прокатившегося по ней, и таким образом, задается последовательность: 1, 2, 3, 1, 4, 2, …, в которой a9=4. Найдите пятизначное число, у которого число единиц равно a1, число десятков - a10, число сотен – a100, число тысяч - a1000, число десятков тысяч - a10000.
Задачу решили:
20
всего попыток:
24
На плоскости Вася провел 100 параллельных прямых, Петя провел еще 100 прямых. Все эти 200 прямых разделили плоскость на несколько частей. Какое наибольшее число частей могло получиться у них при делении плоскости этими прямыми? Например, если мальчики провели по две прямые, то плоскость может быть разделена максимум на 10 частей (см. рис.).
Задачу решили:
16
всего попыток:
31
В координатной плоскости Oxy расположена парабола y=x2. На ось Оy «нанизаны» 13 квадратов так, что две вершины каждого квадрата, лежат на оси параболы, а две другие принадлежат параболе. При этом размеры квадратов подобраны так, что нижние вершины квадратов имеют ординаты 0, 1, 2, 3, … , 12. На сколько частей границы этих квадратов делят внутреннюю часть параболы y=x2. Например, на рисунке показано, что три первых квадрата делят внутреннюю часть параболы y=x2 на 13 частей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|