Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
54
В четырехугольнике ABCD точки K, L, M и N - точки пересечения медиан треугольников ABC, BCD, ACD и ABD соответственно. Найдите площадь четырехугольника ABCD, если площадь четырехугольника KLMN равна 12.
Задачу решили:
13
всего попыток:
30
Бумажную полосу 1х50 расчертили на единичные квадраты, пронумеровали их по порядку числами от 1 до 50, после чего полосу разрезали на десять малых полос 1х5. Пять вертикальных и пять горизонтальных полос переплели друг с другом так, что единичные квадраты каждой полосы чередуются положением верх-низ. Получился числовой квадрат или матрица 5х5. Одна из возможных плетенок и соответствующая ей матрица показана на рисунке. Сколько различных матриц 5х5 может получиться? Поворот на угол кратный 90 градусам новой матрицы не дает, ориентация чисел значения не имеет.
Задачу решили:
30
всего попыток:
39
В правильном двенадцатиугольнике проведено несколько диагоналей, через некоторые точки их пересечения проведены две окружности так, как показано на рисунке. Найдите отношение площади большого круга к площади малого круга?
Задачу решили:
30
всего попыток:
121
В квадратную рамку из дерева вбито по три гвоздя параллельно друг другу с каждой стороны. Меняя глубину погружения гвоздей, добейтесь такого расположения, чтобы каждый гвоздь пересекал ровно n гвоздей (разумеется в проекции). Выясните, при каких значениях n выполняется условие задачи. В ответе укажите сумму всех таких значений n. На приведенном рисунке показано решение при n=1.
Задачу решили:
45
всего попыток:
91
На почтовой марке, посвященной Международному математическому конгрессу 1998 года в Берлине, изображено разбиение прямоугольника на 11 квадратов с целочисленными сторонами. Найдите длину стороны наибольшего квадрата, если длина стороны самого маленького квадрата принимает наименьшее целое значение.
Задачу решили:
37
всего попыток:
58
Первые десять натуральных чисел разбейте на пары так, чтобы из пяти прямоугольников с длинами сторон, соответствующих парам, можно было сложить квадрат. В ответе укажите площадь наибольшего такого квадрата.
Задачу решили:
53
всего попыток:
72
Ёлочка, изображенная на рисунке, получается из квадрата в результате бесконечного процесса следующим образом: квадрат по диагонали разрезается на два треугольника, один из них ложится в основание ёлочки, второй разрезается на два равных треугольника, один из них идет на построение ёлочки, второй разрезается на два равных треугольника, и так строится постоянно растущая ёлочка. Найдите величину угла АЕС. Ответ выразите в градусах, округлив до ближайшего целого числа.
Задачу решили:
56
всего попыток:
66
Последовательность задана рекуррентным способом: a1=2, a2=2, an+2=an+1/an. Найдите сумму 1730 первых членов этой последовательности.
Задачу решили:
45
всего попыток:
50
Найдите наибольшее значение определителя матрицы четвертого порядка, у которой на главной диагонали записаны числа 1, 2, 3 и 4, а все остальные числа одинаковы. Определитель изображен на рисунке.
Задачу решили:
24
всего попыток:
164
Гипотрохоида - плоская кривая, задаваемая фиксированной точкой круга, который катится без скольжения по внутренней стороне другой окружности. Гипротрохоиды можно рисовать с помощью спирографа. На рисунке слева изображено кольцо и диск спирографа. Чтобы диск при движении не скользил, на нем и на внутренней окружности кольца сделаны зубья. Карандаш, вставленный в одно из отверстий диска, при вращении оставляет на бумаге след - гипотрохоиду, здесь незаконченная красная линия. На рисунке справа изображена одна из гипотрохоид. Она нарисована другой парой спирографа, на внутренней окружности кольца которого имеется 96 зубьев. Сколько зубьев на диске?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|