Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
49
Длина стороны правильного семиугольника равна 7. На каждой из них отмечено по 8 точек (включая вершины), разбивающих сторону на единичные отрезки. Через каждые 2 точки проведены прямые линии. Сколько получилось различных прямых.
Задачу решили:
27
всего попыток:
68
81 оловянный солдатик построен в каре (это расстановка в виде квадрата). Какое наименьшее число солдатиков можно передвинуть так, чтобы все 81 образовали каре большего размера, в сравнении с первоначальным?
Задачу решили:
37
всего попыток:
60
В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке. При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?
Задачу решили:
25
всего попыток:
138
На шахматном поле существует всего три замкнутых маршрута коня длиной 4 хода, изображенных на рисунке. Сколько существует различных замкнутых маршрутов коня длиной 6 ходов?
Задачу решили:
26
всего попыток:
96
Десять пронумерованных фишек расположены в форме треугольника. За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?
Задачу решили:
13
всего попыток:
30
Бумажную полосу 1х50 расчертили на единичные квадраты, пронумеровали их по порядку числами от 1 до 50, после чего полосу разрезали на десять малых полос 1х5. Пять вертикальных и пять горизонтальных полос переплели друг с другом так, что единичные квадраты каждой полосы чередуются положением верх-низ. Получился числовой квадрат или матрица 5х5. Одна из возможных плетенок и соответствующая ей матрица показана на рисунке. Сколько различных матриц 5х5 может получиться? Поворот на угол кратный 90 градусам новой матрицы не дает, ориентация чисел значения не имеет.
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
15
всего попыток:
48
Любитель кубика Рубика снял все 54 наклейки с кубика 3х3х3 и переклеил их вновь в случайном порядке. Какова вероятность собрать такой кубик Рубика? Собранным считается кубик, у которого все грани одного цвета. В качестве ответа введите число из первых трёх цифр вероятности, опуская начальные нули. Например, если вероятность равна 0,00040756…, то в ответ вносится число 407.
Задачу решили:
20
всего попыток:
28
Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 в натуральном порядке так, как показано на рисунке. Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех чисел, расположенных на «белой» диагонали всех возможных решений (эти клетки отмечены звездочками).
Задачу решили:
13
всего попыток:
27
25 точек расположены в узлах решетки в форме квадрата (рис. слева). Сколько симметричных маршрутов можно проложить из точки A в точку B по линиям решетки так, чтобы каждый маршрут проходил через все точки и не пересекал себя? На рисунке справа показаны два различных симметричных маршрута.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|