Лента событий:
Sam777e решил задачу "Параллелограмм и две биссектрисы - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
5
всего попыток:
23
Поверхность правильного октаэдра разрезать на как можно меньшее количество равных частей и ими оклеить без просветов и наложений простую (тригональную) бипирамиду. Чему равно количество частей? Простая (тригональная) бипирамида - это многогранник, состоящий из двух равных правильных тетраэдров, имеющих общую грань.
Задачу решили:
7
всего попыток:
53
Поверхность куба разрезать на минимальное число частей так, чтобы ими оклеить без наложений и просветов два равных куба. Чему равно это число?
Задачу решили:
4
всего попыток:
5
Разрежьте поверхность правильного октаэдра на две части с соотношением площадей 7:1 так, чтобы ими можно было оклеить без просветов и наложений простую (тригональную) бипирамиду. Простая (тригональная) бипирамида - это многогранник, состоящий из двух равных правильных тетраэдров, имеющих общую грань.
Задачу решили:
9
всего попыток:
14
Отрезки, соединяющие центры оснований правильной треугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.
Задачу решили:
4
всего попыток:
7
Поверхность правильного октаэдра разрезать на несколько частей, чтобы ими можно было оклеить без просветов и наложений как два равных правильных тетраэдра, так и три равных правильных октаэдра. На какое минимальное число частей можно разрезать октаэдр?
Задачу решили:
2
всего попыток:
4
Поверхность правильного тетраэдра разрезать на части и сложить из них правильный октаэдр без просветов и наложений. На какое минимальное число частей можно разрезать тетраэдр?
Задачу решили:
9
всего попыток:
12
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади a, b, c трёх из них образуют арифметическую прогрессию с разностью 1. Найти наибольшую площадь d внутреннего треугольника такую, что d – точный квадрат.
Задачу решили:
9
всего попыток:
20
Поверхность правильного октаэдра разрезать на минимальное число частей и сложить из них без наложений и просветов три равных правильных октаэдра, не имеющих общих точек. Чему равно это число?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|