Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
47
Вовочка отпилил от каждой ножки табуретки по кусочку. После этого табуретка стала стоять наклонно, но по-прежнему касалась пола всеми ножками. Длины трёх отпиленных кусочков 7, 9 и 13. Найдите все возможные длины четвёртого кусочка и укажите их сумму. (Сиденье табуретки - квадратное, ножки - перпендикулярны сиденью и можно считать бесконечно тонкими, т.е. касаются пола одной точкой.)
Задачу решили:
36
всего попыток:
62
N микробов забрались на шахматную доску 8х8 и расселись в центрах клеток (по одному на клетку). Оказалось, что никакие три микроба не сидят на одной прямой линии. Найдите наибольшее возможное N.
Задачу решили:
37
всего попыток:
46
Рассматриваются различные наборы из семи неотрицательных целых чисел а1, а2, а3, а4, а5, а6, а7 такие, что 0<=а1<=а2<=а3<= а4<=а5<=а6<=а7 и а1+а2+а3+а4+а5+а6+а7=145. Чему может быть равна наименьшая сумма s=а1+а3+а5+а7?
Задачу решили:
35
всего попыток:
36
Дана равнобедренная трапеция АВСD с основаниями 6 и 24 и высотой 20. Найдите величину наименьшей суммы расстояний: |PA|+|PB|+|PC|+|PD|, где Р – точка внутри трапеции (или на границе).
Задачу решили:
27
всего попыток:
52
Решите неравенство: А(х) / В(х) <= 0, где числитель В качестве ответа укажите значение выражения |m1| + |m2| + …, где m1, m2, …– середины ненулевой длины конечных промежутков решения неравенства.
Задачу решили:
36
всего попыток:
41
Рассматриваются площади всех выпуклых четырёхугольников ABCD, со сторонами |AB|=13, |BC|=77, |CD|=84 и |АD|=36. Найдите значение наибольшей площади.
Задачу решили:
22
всего попыток:
23
В выпуклом пятиугольнике длины сторон по часовой стрелке равны (последовательно) 13, 21, 28, 36 и 43. Докажите, что в такой пятиугольник нельзя вписать окружность.
Задачу решили:
42
всего попыток:
48
Найдите действительные значения неизвестных x, y, z из системы уравнений: В ответе укажите значение отношения x/y.
Задачу решили:
30
всего попыток:
51
Дан равносторонний треугольник KMN (|КМ|=32), вершины которого являются центрами квадратов, построенных на сторонах некоторого треугольника АВС. Найдите площадь треугольника АВС, а в ответе укажите ближайшее целое число.
Задачу решили:
35
всего попыток:
40
Рассматривается последовательность действительных чисел {an}, n =0, 1, 2. … При n>0 члены последовательности удовлетворяют уравнению: Найдите величину a5 (то есть член последовательности с индексом 5).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|